Sustainable Food Security and Nutritional Challenges
Abstract
:1. Introduction
2. Functions of Food
3. Food Availability for Sustainable Food Security
3.1. Balanced Diet and Health Outcomes
3.2. Undernutrition
3.3. Excess Food Consumption
4. Nutritional Challenges to Meet Sustainable Goals
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture—Alternative Pathways to 2050; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2018; p. 224. [Google Scholar]
- Vollset, S.E.; Goren, E.; Yuan, C.W.; Cao, J.; Smith, A.E.; Hsiao, T.; Bisignano, C.; Azhar, G.S.; Castro, E.; Chalek, J.; et al. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: A forecasting analysis for the global burden of disease study. Lancet 2020, 396, 1285–1306. [Google Scholar] [CrossRef]
- Laganda, G. 2021 Is Going to Be a Bad Year for World Hunger. Available online: https://www.un.org/en/food-systems-summit/news/2021-going-be-bad-year-world-hunger (accessed on 15 November 2024).
- Speer, H.; D’Cunha, N.M.; Naumovski, N.; McKune, A.J. Sex, age, BMI, and c-reactive protein impact the odds of developing hypertension-findings based on data from the health and retirement study (hrs). Am. J. Hypertens. 2021, 34, 1057–1063. [Google Scholar] [CrossRef]
- Kouvari, M.; Panagiotakos, D.B.; Naumovski, N.; Chrysohoou, C.; Georgousopoulou, E.N.; Yannakoulia, M.; Tousoulis, D.; Pitsavos, C.; The ATTICA study Investigators. Dietary anti-inflammatory index, metabolic syndrome and transition in metabolic status; a gender-specific analysis of ATTICA prospective study. Diabetes Res. Clin. Pract. 2020, 161, 108031. [Google Scholar] [CrossRef] [PubMed]
- Bazerghi, C.; McKay, F.H.; Dunn, M. The role of food banks in addressing food insecurity: A systematic review. J. Community Health 2016, 41, 732–740. [Google Scholar] [CrossRef]
- Le, T.H.; Disegna, M.; Lloyd, T. National Food Consumption Patterns: Converging Trends and the Implications for Health. EuroChoices 2023, 22, 66–73. [Google Scholar] [CrossRef]
- EAT, Diets for a Better Future. 2020. Available online: https://eatforum.org/knowledge/diets-for-a-better-future/ (accessed on 20 November 2024).
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Sixth Assessment. Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar]
- Helland, J.; Sörbö, G.M. Food Security and Social Conflict. CMI Report 2014:1; Christian Michelssen Institute: Bergen, Norway, 2014. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Johnson, L.K.; Dunning, R.K.; Bloom, J.D.; Gunter, C.C.; Boyette, M.D.; Creamer, N.G. Estimating on-farm food loss at the field level: A methodology and applied case study on a North Carolina farm. Resour. Conserv. Recy. 2018, 37, 243–250. [Google Scholar] [CrossRef]
- Vågsholm, I.; Arzoomand, N.S.; Boqvist, S. Food security, safety, and sustainability—Getting the trade-offs right. Front. Sustain. Food Syst. 2020, 4, 16. [Google Scholar] [CrossRef]
- FAO. The Function of Food. Food & Nutrition A Handbook for Namibian Volunteer Leaders. 2004. Available online: https://www.fao.org/4/a0104e/a0104e06.htm (accessed on 20 October 2024).
- Dobe, M. Nutrition, Diet, and Health: Role of Macronutrients, Micronutrients, and Nutraceuticals. In Micronutrients and Macronutrients as Nutraceuticals, 1st ed.; Gupta, P.C., Bhattacharya, M., Sharma, N., Kesharwani, R.K., Keservani, R.K., Eds.; Apple Academic Press: New York, NY, USA, 2024; pp. 47–88. [Google Scholar] [CrossRef]
- Kottusch, P.; Tillmann, M.; Püschel, K. Oberlebenszeit bei Nahrungs- und Flüssigkeitskarenz [Survival time without food and drink]. Arch Kriminol. 2009, 224, 184–191. (In German) [Google Scholar] [PubMed]
- Barrell, A. How Long Can You Survive Without Food? 2023. Available online: https://www.medicalnewstoday.com/articles/how-long-can-you-go-without-food (accessed on 21 October 2024).
- Silver, N. How Long Can You Live Without Water? 2024. Available online: https://www.healthline.com/health/food-nutrition/how-long-can-you-live-without-water (accessed on 21 October 2024).
- Berry, E.M. Sustainable food systems and the Mediterranean diet. Nutrients 2019, 11, 2229. [Google Scholar] [CrossRef] [PubMed]
- World Bank Group. What is Food Security? Available online: https://www.worldbank.org/en/topic/agriculture/brief/food-security-update/what-is-food-security (accessed on 30 September 2024).
- Berry, E.M.; Dernini, S.; Burlingame, B.; Meybeck, A.; Conforti, P. Food security and sustainability: Can one exist without the other? Public Health Nutr. 2015, 18, 2293–2302. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.Y.; Halim-Lim, S.A.; Tan, T.B.; Kamarulzaman, N.H.; Jamaludin, A.A.; Wan Abd Al Qadr Imad, W.-M. Exploring the drivers and the interventions towards sustainable food security in the food supply chain. Sustainability 2020, 12, 7890. [Google Scholar] [CrossRef]
- Swaminathan, M.; Bhavani, R. Food production & availability—Essential prerequisites for sustainable food security. Indian J. Med. Res. 2013, 138, 383–391. [Google Scholar] [CrossRef] [PubMed]
- García-Díez, J.; Gonçalves, C.; Grispoldi, L.; Cenci-Goga, B.; Saraiva, C. Determining food stability to achieve food security. Sustainability 2021, 13, 7222. [Google Scholar] [CrossRef]
- Haji, M.; Himpel, F. Building resilience in food security: Sustainable strategies post-COVID-19. Sustainability 2024, 16, 995. [Google Scholar] [CrossRef]
- FAO; WHO. Driving Commitment for Nutrition Within the UN Decade of Action on Nutrition: Policy Brief; World Health Organization: Geneva, Switzerland, 2018; Available online: https://www.who.int/publications/i/item/WHO-NMH-NHD-17.11 (accessed on 30 September 2024).
- Guiné, R.d.P.F.; Pato, M.L.d.J.; Costa, C.A.d.; Costa, D.d.V.T.A.d.; Silva, P.B.C.d.; Martinho, V.J.P.D. Food security and sustainability: Discussing the four pillars to encompass other dimensions. Foods 2021, 10, 2732. [Google Scholar] [CrossRef]
- Thar, C.-M.; Jackson, R.; Swinburn, B.; Mhurchu, C.N. A review of the uses and reliability of food balance sheets in health research. Nutr. Rev. 2020, 78, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2024; FAO: Rome, Italy, 2024; p. 286. Available online: https://openknowledge.fao.org/handle/20.500.14283/cd1254en (accessed on 30 September 2024).
- Bwalya, R.; Chama-Chiliba, C.M.; Malinga, S.; Chirwa, T. Association between household food security and infant feeding practices among women with children aged 6-23 months in rural Zambia. PLoS ONE 2023, 18, e0292052. [Google Scholar] [CrossRef]
- Robinson, S.; Fall, C. Infant nutrition and later health: A review of current evidence. Nutrients 2012, 4, 859–874. [Google Scholar] [CrossRef]
- Sankar, M.J.; Sinha, B.; Chowdhury, R.; Bhandari, N.; Taneja, S.; Martines, J.; Bahl, R. Optimal breastfeeding practices and infant and child mortality: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Buettner, D.; Skemp, S. Blue zones. Am. J. Lifestyle Med. 2016, 10, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.; Partridge, L. Promoting health and longevity through diet: From model organisms to humans. Cell 2015, 161, 106–118. [Google Scholar] [CrossRef]
- Harriden, B.; D’Cunha, N.M.; Kellett, J.; Isbel, S.; Panagiotakos, D.B.; Naumovski, N. Are dietary patterns becoming more processed? The effects of different dietary patterns on cognition: A review. Nutr. Health 2022, 28, 341–356. [Google Scholar] [CrossRef]
- Fadnes, L.T.; Celis-Morales, C.; Økland, J.-M.; Parra-Soto, S.; Livingstone, K.M.; Ho, F.K.; Pell, J.P.; Balakrishna, R.; Javadi Arjmand, E.; Johansson, K.A.; et al. Life expectancy can increase by up to 10 years following sustained shifts towards healthier diets in the United Kingdom. Nature Food 2023, 4, 961–965. [Google Scholar] [CrossRef]
- Capacci, S.; Mazzocchi, M.; Shankar, B.; Traill, B.W. The Triple Burden of Malnutrition in Europe and Central Asia: A Multivariate Analysis; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2013; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/d55ea3ce-775a-4c87-b1a7-16e150a59b0c/content (accessed on 30 September 2024).
- WHO. Malnutrition. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/malnutrition (accessed on 30 September 2024).
- Prentice, A.M. The Triple Burden of Malnutrition in the Era of Globalization. In Intersections of Nutrition: Retracing Yesterday, Redefining Tomorrow: 97th Nestlé Nutrition Institute Workshop, June 2022; Rogacion, J.M., Ed.; S.Karger AG: Basel, Switzerland, 2023; Volume 97, pp. 51–61. [Google Scholar] [CrossRef]
- McAtee, J.; King, C.; Chai, W. Food Insecurity Is Inversely Associated with Healthy Food Availability among Adults in the United States. Diabesity 2019, 5, 17–22. [Google Scholar] [CrossRef]
- Booker, J.M.; Chang, D.C.; Stinson, E.J.; Mitchell, C.M.; Votruba, S.B.; Krakoff, J.; Gluck, M.E.; Cabeza de Baca, T. Food insecurity is associated with higher respiratory quotient and lower glucagon-like peptide 1. Obesity 2022, 30, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, S.; Kesavarapu, K.; Darden, N.; Herring, S. Food Insecurity and Obesity among Black Women: Exploring Eating Behaviors. Obesity 2021, 29, 104. [Google Scholar]
- Stinson, E.J.; Votruba, S.B.; Venti, C.; Perez, M.; Krakoff, J.; Gluck, M.E. Food insecurity is associated with maladaptive eating behaviors and objectively measured overeating. Obesity 2018, 26, 1841–1848. [Google Scholar] [CrossRef]
- Passarelli, S.; Free, C.M.; Shepon, A.; Beal, T.; Batis, C.; Golden, C.D. Global estimation of dietary micronutrient inadequacies: A modelling analysis. Lancet Glob. Health 2024, 12, e1590–e1599. [Google Scholar] [CrossRef]
- Castillo, D.C.; Ramsey, N.L.M.; Yu, S.S.K.; Ricks, M.; Courville, A.B.; Sumner, A.E. Inconsistent access to food and cardiometabolic disease: The effect of food insecurity. Curr. Cardiovasc. Risk Rep. 2012, 6, 245–250. [Google Scholar] [CrossRef]
- Pengpid, S.; Peltzer, K. Food insecurity and health outcomes among community-dwelling middle-aged and older adults in India. Sci. Rep. (Nat. Publ. Group) 2023, 13, 1136. [Google Scholar] [CrossRef] [PubMed]
- Shook, R.P.; Hand, G.A.; Paluch, A.E.; Wang, X.; Moran, R.; Hébert, J.R.; Jakicic, J.M.; Blair, S.N. High respiratory quotient is associated with increases in body weight and fat mass in young adults. Eur. J. Clin. Nutr. 2016, 70, 1197–1202. [Google Scholar] [CrossRef]
- Felisbino-Mendes, M.S.; Cousin, E.; Malta, D.C.; Machado, Í.E.; Ribeiro, A.L.P.; Duncan, B.B.; Schmidt, M.I.; Silva, D.A.S.; Glenn, S.; Afshin, A.; et al. The burden of non-communicable diseases attributable to high BMI in Brazil, 1990–2017: Findings from the Global Burden of Disease Study. Popul. Health Metr. 2020, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Flegal, K.M.; Kit, B.K.; Orpana, H.; Graubard, B.I. Association of all-cause mortality with overweight and obesity using standard body mass index categories. JAMA 2013, 309, 71. [Google Scholar] [CrossRef] [PubMed]
- Putra, I.G.N.E.; Daly, M.; Sutin, A.; Steptoe, A.; Scholes, S.; Robinson, E. Obesity, psychological well-being related measures, and risk of seven non-communicable diseases: Evidence from longitudinal studies of UK and US older adults. Int. J. Obes. 2024, 48, 1283–1291. [Google Scholar] [CrossRef] [PubMed]
- Grant, E.M.; Gearry, R.B.P.; Wilson, R.M.; Pearson, J.P.; Skidmore, P.M.L.P. Home availability of fruit and vegetables and obesogenic foods as an indicator of nutrient intake in 50 year olds from Canterbury, New Zealand. Asia Pac. J. Clin. Nutr. 2017, 26, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Moubarac, J.-C.; Levy, R.B.; Canella, D.S.; Louzada, M.L.d.C.; Cannon, G. Household availability of ultra-processed foods and obesity in nineteen European countries. Public Health Nutr. 2018, 21, 18–26. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Lawrence, M.; Louzada, M.L.d.C.; Pereira Machado, P. Ultra-Processed Foods, Diet Quality and Human Health Using the NOVA Classification System, 1st ed.; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2019; p. 48. Available online: https://openknowledge.fao.org/handle/20.500.14283/ca5644en (accessed on 30 September 2024).
- Siervo, M.; Montagnese, C.; Mathers, J.C.; Soroka, K.R.; Stephan, B.C.; Wells, J.C. Sugar consumption and global prevalence of obesity and hypertension: An ecological analysis. Public Health Nutr. 2014, 17, 587–596. [Google Scholar] [CrossRef]
- Uauy, R.; Díaz, E. Consequences of food energy excess and positive energy balance. Public Health Nutr. 2005, 8, 1077–1099. [Google Scholar] [CrossRef]
- Pereira De Araújo, T.; De Moraes, M.M.; Afonso, C.; Rodrigues, S.S.P. Trends in ultra-processed food availability and its association with diet-related non-communicable disease health indicators in the Portuguese population. Br. J. Nutr. 2024, 131, 1600–1607. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.D.; Mishra, R.; Maurya, K.K.; Singh, R.B.; Wilson, D.W. Estimates for world population and global food availability for global health. In The Role of Functional Food Security in Global Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–24. [Google Scholar]
- Grosso, G.; Mateo, A.; Rangelov, N.; Buzeti, T.; Birt, C. Nutrition in the context of the Sustainable Development Goals. Eur J Public Health 2020, 30 (Suppl. S1), i19–i23. [Google Scholar] [CrossRef] [PubMed]
- WHO. The Double Burden of Malnutrition: Priority Actions on Ending Childhood Obesity; World Health Organization, Regional Office for South-East Asia: New Delhi, India, 2020. [Google Scholar]
- Das, S.; Hossain, Z.; Nesa, M.K. Levels and trends in child malnutrition in Bangladesh. Asia Pac. Popul. J. 2009, 24, 51–78. [Google Scholar] [CrossRef]
- Baldi, A.; Pasricha, S.-R. Anaemia: Worldwide Prevalence and Progress in Reduction. In Nutritional Anemia; Springer: Cham, Switzerland, 2022; pp. 3–17. [Google Scholar]
- Silveira, V.N.C.; Carvalho, C.A.; Viola, P.C.A.F.; Magalhães, E.I.S.; Padilha, L.L.; Conceição, S.I.O.; Frota, M.T.B.A.; Calado, I.L.; Cantanhede, N.A.; Franceschini, S.C.; et al. Prevalence of iron-deficiency anaemia in Brazilian children under 5 years of age: A systematic review and meta-analysis. Br. J. Nutr. 2021, 126, 1257–1269. [Google Scholar] [CrossRef] [PubMed]
- Stevens, G.A.; Bennett, J.E.; Hennocq, Q.; Lu, Y.; De-Regil, L.M.; Rogers, L.; Danaei, G.; Li, G.; White, R.A.; Flaxman, S.R.; et al. Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: A pooled analysis of population-based surveys. Lancet Glob. Health 2015, 3, e528–e536. [Google Scholar] [CrossRef]
- Lin, X.; Xu, Y.; Xu, J.; Pan, X.; Song, X.; Shan, L.; Zhao, Y.; Shan, P.F. Global burden of noncommunicable disease attributable to high body mass index in 195 countries and territories, 1990–2017. Endocrine 2020, 69, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Odhiambo, J.N.; Sartorius, B. Mapping of anaemia prevalence among pregnant women in Kenya (2016–2019). BMC Pregnancy Childbirth 2020, 20, 711. [Google Scholar] [CrossRef]
- Wessells, K.R.; Brown, K.H. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 2012, 7, e50568. [Google Scholar] [CrossRef] [PubMed]
- The Iodine Global Network. Global Scorecard of Iodine Nutrition in 2020 in the General Population Based on Schoolage Children; IGN: Ottawa, ON, Canada, 2021; Available online: https://ign.org/app/uploads/2023/09/Global_Scorecard_2020-3-June-2020.pdf (accessed on 19 November 2024).
- Webb, P. Why Nutrition Must Feature Prominently in the Post-2015 Sustainable Development Goals. 2015. Available online: https://www.ajfand.net/Volume15/No2/commentary.html#gsc.tab=0 (accessed on 16 January 2025).
- UNICEF. The State of Food Security and Nutrition in the World 2024: Financing to End Hunger, Food Insecurity and Malnutrition in All Its Forms. 2024. Available online: https://www.fao.org/publications/home/fao-flagship-publications/the-state-of-food-security-and-nutrition-in-the-world/en (accessed on 20 November 2024).
- Busch-Hallen, J.; Walters, D.; Rowe, S.; Chowdhury, A.; Arabi, M. Impact of COVID-19 on maternal and child health. Lancet Glob. Health 2020, 8, e1257. [Google Scholar] [CrossRef] [PubMed]
- Varzakas, T.; Smaoui, S. Global food security and sustainability issues: The road to 2030 from nutrition and sustainable healthy diets to food systems change. Foods 2024, 13, 306. [Google Scholar] [CrossRef]
- Allee, A.; Lynd, L.R.; Vaze, V. Cross-national analysis of food security drivers: Comparing results based on the Food Insecurity Experience Scale and Global Food Security Index. Food Secur. 2021, 13, 1245–1261. [Google Scholar] [CrossRef]
- Fyles, H.; Madramootoo, C. Key drivers of food insecurity, In Emerging Technologies for Promoting Food Security; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–19. [Google Scholar]
- Misselhorn, A.A. What drives food insecurity in southern Africa? A meta-analysis of household economy studies. Glob. Environ. Chang. 2005, 15, 33–43. [Google Scholar] [CrossRef]
- Mardones, F.O.; Rich, K.M.; Boden, L.A.; Moreno-Switt, A.I.; Caipo, M.L.; Zimin-Veselkoff, N.; Alateeqi, A.M.; Baltenweck, I. The COVID-19 pandemic and gobal food security. Front. Vet. Sci. 2020, 7, 928. [Google Scholar] [CrossRef] [PubMed]
- Osendarp, S.; Akuoku, J.K.; Black, R.E.; Headey, D.; Ruel, M.; Scott, N.; Shekar, M.; Walker, N.; Flory, A.; Haddad, L.; et al. The COVID-19 crisis will exacerbate maternal and child undernutrition and child mortality in low- and middle-income countries. Nat. Food 2021, 2, 476–484. [Google Scholar] [CrossRef]
- Fan, S.; Si, W.; Zhang, Y. How to prevent a global food and nutrition security crisis under COVID-19? China Agric. Econ. Rev. 2020, 12, 471–480. [Google Scholar] [CrossRef]
- Suresh, B. Global economic crisis and nutrition security in Africa. Afr. J. Food Agric. Nutr. Dev. 2009, 9, 1797–1806. [Google Scholar]
- Lassi, Z.S.; Das, J.K.; Zahid, G.; Imdad, A.; Bhutta, Z.A. Impact of education and provision of complementary feeding on growth and morbidity in children less than 2 years of age in developing countries: A systematic review. BMC Public Health 2013, 13 (Suppl. 3), S13. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, S.R.; Hayes, E.; Kalumba, K.; Biggs, B.A. Effect of daily iron supplementation on health in children aged 4-23 months: A systematic review and meta-analysis of randomised controlled trials. Lancet Glob. Health 2013, 1, e77–e86. [Google Scholar] [CrossRef]
- Low, M.; Farrell, A.; Biggs, B.A.; Pasricha, S.R. Effects of daily iron supplementation in primary-school-aged children: Systematic review and meta-analysis of randomized controlled trials. CMAJ 2013, 185, E791–E802. [Google Scholar] [CrossRef]
- Berger, S.G.; de Pee, S.; Bloem, M.W.; Halati, S.; Semba, R.D. Malnutrition and morbidity are higher in children who are missed by periodic vitamin A capsule distribution for child survival in rural Indonesia. J. Nutr. 2007, 137, 1328–1333. [Google Scholar] [CrossRef] [PubMed]
- Lopez de Romaña, D.; Greig, A.; Thompson, A.; Arabi, M. Successful delivery of nutrition programs and the sustainable development goals. Curr. Opin. Biotechnol. 2021, 70, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Koirala, S.; Anal, A.K. Probiotics-based foods and beverages as future foods and their overall safety and regulatory claims. Future Foods 2021, 3, 100013. [Google Scholar] [CrossRef]
- Siegrist, M.; Hartman, C. Consumer acceptance of novel food technologies. Nat. Food 2020, 1, 343–350. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.; Riley, W.; Hussain, M.A. (Eds.) Alternative Proteins: Safety and Food Security Considerations; CRC Press: Boca Raton, FL, USA, 2022; ISBN 9780429299834. [Google Scholar] [CrossRef]
Food Availability Situation | Survival | Effects on the Body’s Functions |
---|---|---|
With water only, no food | 1–3 weeks (most cases) (In some exceptional cases, up to 2–3 months) | Starvation affects many vital processes including: Cardiovascular system (drop of pulse and blood pressure) Gastrointestinal system (bloating, stomach pain, vomiting, nausea, fluctuations in blood sugar levels, bacterial infections) Central nervous system (lack of brain energy, difficulty concentrating, sleep issues) Endocrine system (menstruation becomes irregular or stops altogether, bones weaken, metabolic rate drops, and core body temperature drops leading to hypothermia) |
With food only, no water | 2–3 weeks (Adults can survive for a few weeks but infants can die within hours) | The unavailability of water causes dehydration. Moderate dehydration symptoms
|
No food, no water | 4 days (Maximum one week) | Starvation and unavailability of water are more dangerous and lead to
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.A.; Li, L.; Kalu, A.; Wu, X.; Naumovski, N. Sustainable Food Security and Nutritional Challenges. Sustainability 2025, 17, 874. https://doi.org/10.3390/su17030874
Hussain MA, Li L, Kalu A, Wu X, Naumovski N. Sustainable Food Security and Nutritional Challenges. Sustainability. 2025; 17(3):874. https://doi.org/10.3390/su17030874
Chicago/Turabian StyleHussain, Malik A., Li Li, Arua Kalu, Xiyang Wu, and Nenad Naumovski. 2025. "Sustainable Food Security and Nutritional Challenges" Sustainability 17, no. 3: 874. https://doi.org/10.3390/su17030874
APA StyleHussain, M. A., Li, L., Kalu, A., Wu, X., & Naumovski, N. (2025). Sustainable Food Security and Nutritional Challenges. Sustainability, 17(3), 874. https://doi.org/10.3390/su17030874