Evaluating Surface Stability for Sustainable Development Following Cessation of Mining Exploitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mining Galleries
2.1.1. Surface Subsidence Above a Mining Gallery
- − tilt (slope):
- − curvature (concave):
- − curvature (convex):
- − compressive strain:
- − tensile strain:
- –
- average depth of the shaft gallery: = 67 m,
- –
- diameter of the circular gallery cross-section: = 2.2 m,
- –
- angle of the main influence range: = 39°,
- –
- convergence coefficients: = 0.10; 0.25; 0.50; 0.75 and 1.00.
2.1.2. Sinkholes Above Mining Galleries
- –
- average depth of the shaft gallery: = 67 m
- –
- diameter of the gallery cross-section: = 2.2 m
- –
- loosening coefficient: = 1.2
- –
- angle of natural repose: = 30°, and
- –
- safety factor: = 1.3.
2.2. Surface Subsidence After the Cessation of Mining Activities
- Preliminary Subsidence: During this phase, 5 to 15% of the final subsidence occurs.
- Main Phase: This phase involves the consolidation of the broken rock mass almost exclusively within the active mining period. This phase typically lasts from 6 to 12 months, during which approximately 75% of the final subsidence is revealed.
- Long-Term Consolidation: The final stage, where about 10% of the final subsidence occurs, is associated with the long-term consolidation of the goaf. This stage can last from a few months to several years after the cessation of mining operations. The duration of this phase is influenced by factors such as the depth and mining system, the total thickness of the exploited deposit, the number of mined seams, and the geological structure of the rock mass.
2.3. Flooding of Mines
3. Discussion of Results
3.1. Examples of Land Deformations Above Old Mining Gallery
3.1.1. Continuous Land Surface Deformations
3.1.2. Example of Sinkholes Above Mining Galleries
3.2. Example of Surface Subsidence After the Cessation of Mining Activities
3.3. Flooding of Abandoned Mines: A Practical Example
- = 0.364∙10−2 m2/MN,
- = 3,
- = 12 gon (ca. 10.8°).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cempiel, E.; Strzałkowski, P.; Ścigała, R.; Bryt-Nitarska, I. Assessment of Damage Causes of Monumental Objects Located in Mining Areas – Case Study. Arch. Min. Sci. 2023, 68, 187–205. [Google Scholar] [CrossRef]
- Szojda, L.; Kapusta, Ł. Numerical Analysis of Buildings Located on the Edge of the Post-Mining Basin. Arch. Min. Sci. 2023, 68, 125–140. [Google Scholar] [CrossRef]
- Feng, Z.; Hu, Z.; Li, G.; Zhang, Y.; Zhang, X.; Zhang, H. Improving Mine Reclamation Efficiency for Farmland Sustainable Use: Insights from Optimizing Mining Scheme. J. Clean. Prod. 2022, 379, 134615. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, X.; Ren, Y.; Lu, S.; Song, D.; Wang, Y. A Novel Mine-Specific Eco-Environment Index (MSEEI) for Mine Ecological Environment Monitoring Using Landsat Imagery. Remote Sens. 2023, 15, 933. [Google Scholar] [CrossRef]
- Zhang, M.; Kafy, A.-A.; Ren, B.; Zhang, Y.; Tan, S.; Li, J. Application of the Optimal Parameter Geographic Detector Model in the Identification of Influencing Factors of Ecological Quality in Guangzhou, China. Land 2022, 11, 1303. [Google Scholar] [CrossRef]
- Li, J.; Zang, M.; Xu, N.; Mei, G.; Yang, S. An Interferometric-Synthetic-Aperture-Radar-Based Method for Predicting Long-Term Land Subsidence in Goafs through the Concatenation of Multiple Sources of Short-Term Monitoring Data. Remote Sens. 2023, 15, 4203. [Google Scholar] [CrossRef]
- Tang, C.; Li, H.; Guo, G.; Gong, Y.; Zhang, X.; Huang, C.; Zhou, H.; Yuan, Y.; Huo, W.; Dai, G.; et al. Prediction Method of Residual Subsidence of Strip Goaf Located in Suburb for Safely Constructing Viaduct. Energy Explor. Exploit. 2024, 42, 65–81. [Google Scholar] [CrossRef]
- Vervoort, A. Uplift of the Surface of the Earth above Abandoned Coal Mines. Part A: Analysis of Satellite Data Related to the Movement of the Surface. Int. J. Rock Mech. Min. Sci. 2021, 148, 104896. [Google Scholar] [CrossRef]
- Milczarek, W.; Blachowski, J.; Grzempowski, P. Application of PSInSAR for Assessment of Surface Deformations in Post_mining Area _ Case Study of the Former Walbrzych Hard Coal Basin (SW Poland). Acta Geodyn. Et Geomater. 2016, 14, 41–52. [Google Scholar] [CrossRef]
- Gong, Y.; Zha, J.; Guo, Q.; Guo, G. A New Indicator for Estimating the Degree of Mining-Induced Land Subsidence: The Overburden’s Average GSI Value. Sci Rep. 2024, 14, 332. [Google Scholar] [CrossRef]
- Contrucci, I.; Namjesnik, D.; Niemz, P.; Primo, P.; Kotyrba, A.; Mutke, G.; Konicek, P.; Dominique, P.; Rudolph, T.; Möllerherm, S.; et al. European Feedback on Post-Mining Seismicity. J. Sustain. Min. 2023, 22, 195. [Google Scholar] [CrossRef]
- Bazaluk, O.; Sadovenko, I.; Zahrytsenko, A.; Saik, P.; Lozynskyi, V.; Dychkovskyi, R. Forecasting Underground Water Dynamics within the Technogenic Environment of a Mine Field. Case Study. Sustainability 2021, 13, 7161. [Google Scholar] [CrossRef]
- Bondarenko, V.; Salieiev, I.; Kovalevska, I.; Chervatiuk, V.; Malashkevych, D.; Shyshov, M.; Chernyak, V. A New Concept for Complex Mining of Mineral Raw Material Resources from DTEK Coal Mines Based on Sustainable Development and ESG Strategy. Min. Miner. Depos. 2023, 17, 1–16. [Google Scholar] [CrossRef]
- Knothe, S. A Profile Equation for a Definitely Shaped Subsidence Trough. [Równanie profilu ostatecznie wykształconej niecki osiadania] (in Polish). Arch. Górnictwa i Hut. 1953, 1, 22–38. [Google Scholar]
- Blachowski, J.; Wajs, J.; Walerysiak, N.; Becker, M. Monitoring of Post-Mining Subsidence Using Airborne and Terrestrial Laser Scanning Approach. Arch. Min. Sci. 2024, 69, 431–446. [Google Scholar] [CrossRef]
- Bascetin, A.; Tuylu, S.; Adıguzel, D. New Technologies in Mining Sustainable Production. Tailings Management and Mining Chemicals. Eng. J. Satbayev Univ. 2022, 144, 41–50. [Google Scholar] [CrossRef]
- Polanin, P.; Kowalski, A.; Walentek, A. Numerical Simulation of Subsidence Caused by Roadway System. Arch. Min. Sci. 2019, 64, 385–397. [Google Scholar] [CrossRef]
- Jing, W.; Zhao, Y.; Kong, J.; Huang, C.; Jilani, K.M.K.; Li, H. The Time-Space Prediction Model of Surface Settlement for above Underground Gas Storage Cavern in Salt Rock Based on Gaussian Function. J. Nat. Gas. Sci. Eng. 2018, 53, 45–54. [Google Scholar] [CrossRef]
- Kowalski, A.; Bialek, J.; Rutkowski, T. Caulking of Goafs Formed by Cave-in Mining and Its Impact on Surface Subsidence in Hard Coal Mines. Arch. Min. Sci. 2021, 66, 85–100. [Google Scholar] [CrossRef]
- Knothe, S. Wpływ budowy i eksploatacji tunelu na powierzchnię. Przegląd Geodezyjny. Wydawnictwo NOT 1952, 266–270. [Google Scholar]
- Peck, B.B. Deep Excavation and Tunnelling in Soft Ground. State of the Art Report. In Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering (Mexico), Mexico City, Mexico, 25–29 August 1969; Volume 4, pp. 225–290. [Google Scholar]
- Sroka, A. Przybliżona metoda określania przemieszczeń punktów górotworu i powierzchni dla małych, regularnych pól eksploatacyjnych. Zesz. Nauk. AGH Geod. 1976, 46, 81–94. [Google Scholar]
- Mair, R.J.; Taylor, R.N.; Bracegirdle, A. Subsurface Settlement Profiles above Tunnels in Clays. Geotechnique 1993, 43, 315–320. [Google Scholar] [CrossRef]
- Löbel, K.-H.; Sroka, A. Markscheiderische Modelle für die Prognose von stetigen und unstetigen Verformungen an der Tagesoberfläche. In Proceedings of the 1. Altbergbau-Kolloquium, Freiberg, Germany, 8–9 November 2001; pp. 71–84. [Google Scholar]
- Knothe, S. Effect of Time on Formation of Basin Subsidence. Arch. Min. Steel Ind. 1953, 1, 1–7. [Google Scholar]
- Awierszyn, S.G. Mining-Induced Rock Mass Subsidence. Ugletiechizdat Mosc. 1947. [Google Scholar]
- Awierszyn, S.G. Einige Aufgaben der Theorie der Gesteinsverschiebungen unter dem Einfluß Bergmännischer Hohlräume. Int. Bur. Rock Mech. 1971. [Google Scholar]
- Whittaker, B.N.; Reddish, D.J. Surface Subsidence Aspects of Room and Pillar Mining. In Subsidence: Occurrence, Prediction and Control; Elsevier: Amsterdam, The Netherlands, 1985; p. 37. [Google Scholar]
- Meier, G. Grundsätze von Bergsicherungsarbeiten im Gangbergbau: Geotechnische Aufgaben bei Bergsicherungsarbeiten Zur Erkundung und Sanierung von Altbergbau Im Fels an Typischen Beispielen des Thüringer Raumes und des Erzgebirges; Ges. für Umwelt-und Wirtschaftsgeologie: Berlin, Germany, 1991. [Google Scholar]
- Whittaker, B.N.; Reddish, D.J. Subsidence Occurrence, Prediction and Control; Elsevier: Amsterdam, The Netherlands, 1989; Volume 56. [Google Scholar]
- Sroka, A.; Tajduś, K.; Misa, R.; Clostermann, M. The Possibility of Discontinuity/Sinkholes Appearance with the Determination of Their Geometry in the Case of Shallow Drifts. In Proceedings of the 18th Altbergbau-Kolloquium, Wieliczka, Poland, 8–10 November 2018; pp. 173–185. [Google Scholar]
- Clostermann, M.; Alber, M.; Placzek, D.; Sroka, A. Gutachterliche Stellungnahme zu den Themen „Eiwirkungsrelevanz des Altbergbaus, Bemessung von Einwirkungs- und Gefährdungsbereichen und Einfluss von Grubenwasserstandsänderungen“; Dortmund Mining Authority: Dortmund, Germany, 2020. [Google Scholar]
- Hager, S. Integrierte Bewertung altbergbaulicher Risikoobjekte des Steinkohlenbergbaus der RAG Aktiengesellschaft. Markscheidewesen 2023, 130, 44–58. [Google Scholar]
- Meier, J. Zur Tagesbruchsimulation mit numerischen Modellen in Braunkohlentiefbau. In Proceedings of the 3th Altbergbau-Kolloquium, Freiberg, Germany, 8 November 2003; pp. 222–235. [Google Scholar]
- Zimmermann, K. Prognose und bergschadenskundliche Analyse dynamischer Bodenbewegungen durch oberflächennahen Steinkohlenbergbau in den USA. Ph.D. Thesis, TU Bergakademie Freiberg, Freiberg, Germany, 2011. [Google Scholar]
- Bartosik-Sroka, T.; Pielok, J.; Sroka, A. Analitycal Method of the Time Coefficient Determination Emloying Results of Periodical Survay of the Surface and Strata Subsidence. Pr. Kom. Górniczo-Geologicznej. Geod. 1981, 29, 51–62. [Google Scholar]
- Fenk, J. An Analytical Solution for Calculating Surface Rise during Flooding of Underground Mines (Eine analytische Lösung zur Berechnung von Hebungen der Tagesoberfläche bei Flutung unterirdischer Bergwerksanlagen. Das Marks. 2000, 107, 148611. [Google Scholar]
- Pöttgens, J.J.E. Bodenhebung durch ansteigendes Grubenwasser [Uplift as a Result of Rising Mine Waters]. In The Developing Science and Art of Minerals Surveying, Proceedings of the VIth International Congress for Mine Surveying, Harrogate, UK, 9–13 September 1985; A.A. Balkema: Rotterdam, The Netherlands; Volume 2, pp. 928–938.
- Pöttgens, J.J.E. Bodenhebung und Grundwasseranstieg aus Geotechnischer und markscheiderisch-geodätischer Sicht im Aachen-Limburger Kohlenrevier. Freib. Forschungshefte Bergbau und Geotech. 1998, 847, 193–207. [Google Scholar]
- Misa, R. Knothe’s Theory Parameters – Computational Models and Examples of Practical Applications. Gospod. Surowcami Miner. Miner. Resour. Manag. 2023, 39, 157–180. [Google Scholar] [CrossRef]
- Geertsma, J. Land Subsidence Above Compacting Oil and Gas Reservoirs. J. Pet. Technol. 1973, 25, 734–744. [Google Scholar] [CrossRef]
- Hager, S. Stand der Aktivitäten der RAG Aktiengesellschaft bei der Untersuchung möglicher flutungsinduzierter Bodenbewegungen. In Proceedings of the 11th Geokinematischer Tag, Freiberg, Germany, 6–7 May 2010; pp. 132–145. [Google Scholar]
- Sroka, A.; Preusse, A. Zur Prognose flutungsbedingter Hebungen. In Proceedings of the 9th Altbergbau-Kolloquium, Montanuniversität Leoben, Leoben, Austria, 5–7 November 2009; pp. 184–196. [Google Scholar]
- Misa, R.; Dudek, M.; Sroka, A.; Tajduś, K.; Mrocheń, D. Contribution to the a Priori Assessment of the Value of the Caving Zone Expansion Coefficient in the Forecast of Ground Surface Uplift Caused by the Flooding of Closed Coal Mines in the Ruhr Region/Germany. Bull. Pol. Acad. Sci. Tech. Sci. 2024, 72, 148611. [Google Scholar] [CrossRef]
- Goerke-Mallet, P. Untersuchungen zu raumbedeutsamen Entwicklungen im Steinkohlenrevier Ibbenbüren unter Besonderer Berücksichtigung der Wechselwirkungen von Bergbau und Hydrogeologie. Ph.D. Thesis, RWTH Aachen, Aachen, Germany, 2000. [Google Scholar]
- Preusse, A.; Sroka, A. Risks Posed by Rising Mine-Water Levels. Final Report on Research Project FE No. 0760 0000; Schmidt-Schleicher: Herne, Germany, 2015. [Google Scholar]
- Budryk, W.; Knothe, S. Zasady klasyfikacji terenów Górnośląskiego Okręgu Przemysłowego ze względu na możliwość ich zabudowy. Biul. Komit. Dla Spraw. Górnośl. Okr. Przem. PAN. Komis. Mech. Górotworu 1956, 4, 1–23. [Google Scholar]
- Malinowska, A.; Hejmanowski, R. Building Damage Risk Assessment on Mining Terrains in Poland with GIS Application. J. Rock Mech. Min. Sci. 2010, 47, 238–245. [Google Scholar] [CrossRef]
- Das Bundesamt für Kartographie und Geodäsie (BKG). Available online: https://www.bkg.bund.de/DE/Home/home.html (accessed on 13 September 2024).
- Misa, R.; Sroka, A.; Mrocheń, D.; Tajduś, K. Assessment of Surface Hazard after Mining Exploitation Completion. In Proceedings of the 22th Altbergbau-Kolloquium, Montanuniversität Leoben, Leoben, Austria, 7–8 November 2024. [Google Scholar]
Author | [-] |
---|---|
Whittaker, Reddish (1989) [30] | 1.50 |
Meier (1991) [29] | 1.50 |
Zimmermann (2011) [35] | 1.40 |
Sroka et al. (2018) [31] | = 1.30 |
Clostermann et al. (2020) [32] | 1.46 |
Hager (2023) [33] | = 1.25 |
Coalfield | [m2/MN] | [-] | [m2/MN] | [gon] |
---|---|---|---|---|
Südlimburger Revier (Pöttgens [38]) | 0.350·10−2 | 4 | 1.40·10−2 | - |
Ibbenbüren/Westfeld (Goerke-Mallet [45]) | 0.460·10−2 | 3 | 1.38·10−2 | - |
Erkelenzer Revier/Sophia Jacoba (Sroka and Preuße [43]) | 0.265·10−2 | 4 | 1.06·10−2 | 7–15 = 12 |
Ruhrrevier/Königsborn (Sroka and Preuße [46]) | 0.364·10−2 | 3 | 1.092·10−2 | 12 |
Ground Movement Elements | Max. Values | Position * [m] | |
---|---|---|---|
vertical | Subsidence [mm] | 45.9 | 0 |
Tilt [mm/m] | 0.84 | 33.0 | |
Curvature—concave [km−1] | 0.0422 | 0 | |
Min. radius of curvature—concave [km] | 23.7 | 0 | |
Curvature—convex [km−1] | 0.0188 | 57.2 | |
Min. radius of curvature—convex [km] | 53.1 | 57.2 | |
horizontal | Horizontal displacement [mm] | 27.8 | 33.0 |
Horizontal deformation—compression [mm/m] | 1.39 | 0 | |
Horizontal deformation—tension [mm/m] | 0.62 | 57.2 |
Case | Assumptions | [m] | [m] |
---|---|---|---|
a.* start/end of the route | 20.5 | 51.5 | |
b.* individual route | 30.1 | ||
c.* route branch | 39.6 | ||
22.1 | |||
d * route intersection | 26.8 |
Id | Date (Year) | Subsidence [mm] |
---|---|---|
1 * | 2004 | 740 |
2 | 2006 | 782 |
3 | 2008 | 813 |
4 * | 2010 | 831 |
5 | 2012 | 840 |
6 | 2014 | 850 |
7 * | 2016 | 862 |
8 | 2018 | 865 |
Date [Year] | Subsidence [mm] | ||
---|---|---|---|
Measured | Calculated | Difference | |
2004 * | 740 | 740.0 | 0.0 |
2006 | 782 | 781.6 | −0.4 |
2008 | 813 | 810.7 | −2.3 |
2010 * | 831 | 831.0 | 0.0 |
2012 | 840 | 845.2 | 5.2 |
2014 | 850 | 855.1 | 5.1 |
2016 * | 862 | 862.0 | 0.0 |
2018 | 865 | 866.8 | 1.8 |
2020 | - | 870.2 | - |
2022 | - | 872.6 | - |
2024 | - | 874.2 | - |
Water Province | [mm] | [mm/m] | [mm/m] | [mm/m] |
---|---|---|---|---|
Haus Aden | 303.1 | 0.091 | −0.058 | 0.101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misa, R.; Sroka, A.; Mrocheń, D. Evaluating Surface Stability for Sustainable Development Following Cessation of Mining Exploitation. Sustainability 2025, 17, 878. https://doi.org/10.3390/su17030878
Misa R, Sroka A, Mrocheń D. Evaluating Surface Stability for Sustainable Development Following Cessation of Mining Exploitation. Sustainability. 2025; 17(3):878. https://doi.org/10.3390/su17030878
Chicago/Turabian StyleMisa, Rafał, Anton Sroka, and Dawid Mrocheń. 2025. "Evaluating Surface Stability for Sustainable Development Following Cessation of Mining Exploitation" Sustainability 17, no. 3: 878. https://doi.org/10.3390/su17030878
APA StyleMisa, R., Sroka, A., & Mrocheń, D. (2025). Evaluating Surface Stability for Sustainable Development Following Cessation of Mining Exploitation. Sustainability, 17(3), 878. https://doi.org/10.3390/su17030878