The Network Evolution and Influencing Factors of the Global Cultural Printed Material Trade
Abstract
:1. Introduction
2. Theoretical Framework and Hypothesis
2.1. Multidimensional Proximity
2.2. Socio-Cultural Relations
2.3. Institutional Stability
2.4. Digital Technology
2.5. Industrial Chain
3. Data and Method
3.1. Data Source
3.2. Research Methods
3.2.1. Network Construction
3.2.2. Network Analysis
3.2.3. QAP Analysis
4. The Network Evolution Pattern
4.1. Network Characteristics
4.2. Spatial Linkage Characteristics
4.3. Community Characteristics
4.4. Role of Countries
5. Influencing Factors Dynamics
5.1. Model Construction
5.2. Correlation Analysis
5.3. Regression Results
6. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, R.H. Business Economics and the Printing Industry. Bus. Econ. 2014, 49, 122–126. [Google Scholar] [CrossRef]
- Vanderploeg, A.; Lee, S.-E.; Mamp, M. The application of 3D printing technology in the fashion industry. Int. J. Fash. Des. Technol. Edu. 2017, 10, 170–179. [Google Scholar] [CrossRef]
- Lind, N.; Ramondo, N. Global Innovation and Knowledge Diffusion. Am. Econ. Rev. Insights 2023, 5, 494–510. [Google Scholar] [CrossRef]
- Nye, J.S. Soft Power and Great-Power Competition: Shifting Sands in the Balance of Power Between the United States and China; Springer: Singapore, 2023. [Google Scholar]
- Nye, J.S., Jr. How not to deal with a rising China: A US perspective. Int. Aff. 2022, 98, 1635–1651. [Google Scholar] [CrossRef]
- Zhao, S. Culture and trade: Chinese practices and perspectives. Int. J. Cult. Policy 2023, 29, 135–151. [Google Scholar] [CrossRef]
- Shin, S.Y.; Throsby, D. Cultural diversity and cultural trade: Theory and an application to the motion picture industry. Int. J. Cult. Policy 2023, 29, 449–466. [Google Scholar] [CrossRef]
- Serrano, M.Á.; Boguñá, M. Topology of the world trade web. Phys. Rev. E 2003, 68, 015101. [Google Scholar] [CrossRef]
- Fagiolo, G.; Reyes, J.; Schiavo, S. On the topological properties of the world trade web: A weighted network analysis. Physica A 2008, 387, 3868–3873. [Google Scholar] [CrossRef]
- Fan, T.; Li, H.; Ren, X.-L.; Xu, S.; Gou, Y.; Lü, L. The rise and fall of countries on world trade web: A network perspective. Int. J. Mod. Phys. C 2021, 32, 2150121. [Google Scholar] [CrossRef]
- Ma, R.; Li, K.; Guo, Y.; Zhang, B.; Zhao, X.; Linder, S.; Guan, C.; Chen, G.; Gan, Y.; Meng, J. Mitigation Potential of Global Ammonia Emissions and Related Health Impacts in the Trade Network. Nat. Commun. 2021, 12, 6308. [Google Scholar] [CrossRef]
- Wang, W.; He, C.; Ren, Z. Evolution of mineral resources trade network in China. J. Nat. Resour. 2021, 36, 1893–1908. [Google Scholar] [CrossRef]
- Baqaee, D.R.; Farhi, E. Networks, Barriers, and Trade. Econometrica 2024, 92, 505–541. [Google Scholar] [CrossRef]
- Fukuyama, H.; Tsionas, M.; Tan, Y. The impacts of innovation and trade openness on bank market power: The proposal of a minimum distance cost function approach and a causal structure analysis. Eur. J. Oper Res. 2024, 312, 1178–1194. [Google Scholar] [CrossRef]
- Song, Z.; Chen, S.; Yang, Y. Topological relationship between trade network in the Belt and Road Initiative area and global trade network. Prog. Geogr. 2017, 36, 1340–1348. [Google Scholar]
- Currens, E.R.; Armbruster, M.R.; Castiaux, A.D.; Edwards, J.L.; Martin, R.S. Evaluation and Optimization of PolyJet 3D-Printed Materials for Cell Culture Studies. Anal. Bioanal. Chem. 2022, 414, 3329–3339. [Google Scholar] [CrossRef]
- Ahmed, A.; Arya, S.; Gupta, V.; Furukawa, H.; Khosla, A. 4D Printing: Fundamentals, Materials, Applications and Challenges. Polymer 2021, 228, 123926. [Google Scholar] [CrossRef]
- Mahmood, A.; Ayyaz, T.; Chen, S.G.; Chen, H.F. Revolutionizing manufacturing: A review of 4D printing materials, stimuli, and cutting-edge applications. Compos. Part B-Eng. 2023, 266, 110952. [Google Scholar] [CrossRef]
- Marvasti, A. International trade in cultural goods: A cross-sectional analysis. J. Cult. Econ. 1994, 18, 135–148. [Google Scholar] [CrossRef]
- Marvasti, A.; Canterbery, E.R. Cultural and Other Barriers to Motion Pictures Trade. Econ. Inq. 2005, 43, 39–54. [Google Scholar] [CrossRef]
- Vlassis, A. Soft power, global governance of cultural industries and rising powers: The case of China. Int. J. Cult. Policy 2016, 22, 481–496. [Google Scholar] [CrossRef]
- Sun, X.; Wei, Y.; Jin, Y.; Song, W.; Li, X. The evolution of structural resilience of global oil and gas resources trade network. Glob. Netw. 2023, 23, 391–411. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Cheng, X. Evolution of the global coal trade network: A complex network analysis. Resour. Policy 2019, 62, 496–506. [Google Scholar] [CrossRef]
- Li, T.; Du, D.; Huang, X. The evolution of the spatial structure of global integrated circuit trade network and its relational upgrading. Geogr. Res.-Aust. 2023, 42, 597–616. [Google Scholar]
- Xiu, Z.F.; Liu, R.; Feng, P.S.; Yin, J.W. Does social culture matter for firms’ access to trade credit? Evidence from China. Econ. Model. 2023, 119, 106163. [Google Scholar] [CrossRef]
- Doszhan, R. Multi-vector cultural connection in the conditions of modern globalisation. Interdiscip. Cult. Humanit. Rev. 2023, 2, 27–32. [Google Scholar] [CrossRef]
- Xu, J.; Wang, C.F.; Cui, Y.Z. Multidimensional proximities and interorganizational coinnovation performance: The roles of intraorganizational collaboration network inefficiency. Front. Psychol. 2023, 14, 1121908. [Google Scholar] [CrossRef]
- Boschma, R. Proximity and innovation: A critical assessment. Reg. Stud. 2005, 39, 61–74. [Google Scholar] [CrossRef]
- Qi, R.J.; Ma, G.W.; Liu, C.; Zhang, Q.W.; Wang, Q.Y. Enterprise digital transformation and supply chain resilience. Financ. Res. Lett. 2024, 66, 105564. [Google Scholar] [CrossRef]
- Fernández, A.; Ferrándiz, E.; León, M.D. Are organizational and economic proximity driving factors of scientific collaboration? Evidence from Spanish universities, 2001–2010. Scientometrics 2021, 126, 579–602. [Google Scholar] [CrossRef]
- Jain, S.C. Standardization of International Marketing Strategy: Some Research Hypotheses. J. Mark. 1989, 53, 70–79. [Google Scholar] [CrossRef]
- Umana Dajud, C. Political Proximity and International Trade. Econ. Politics 2013, 25, 283–312. [Google Scholar] [CrossRef]
- Busch, M.L.; Reinhardt, E. Geography, International Trade, and Political Mobilization in U.S. Industries. Am. J. Political Sci. 2000, 44, 703–719. [Google Scholar] [CrossRef]
- Amidi, S.; Fagheh Majidi, A. Geographic Proximity, trade and economic growth: A spatial econometrics approach. Ann. Gis. 2020, 26, 49–63. [Google Scholar] [CrossRef]
- Zhou, M. Multidimensionality and Gravity in Global Trade, 1950–2000. Soc. Forces 2010, 88, 1619–1643. [Google Scholar] [CrossRef]
- Robst, J.; Polachek, S.; Chang, Y.-C. Geographic Proximity, Trade, and International Conflict/Cooperation. Conflict Manag. Peace 2007, 24, 1–24. [Google Scholar] [CrossRef]
- Lazear, E.P. Culture and Language. J. Political Econ. 1999, 107, S95–S126. [Google Scholar] [CrossRef]
- Pankaj, G. Distance still matters: The hard reality of global expansion. Harv. Bus. Rev. 2001, 79, 137–147. [Google Scholar]
- Barnett, G.A.; Nam, Y. A network analysis of international migration: Longitudinal trends and antecedent factors predicting migration. Glob. Netw. 2024, 24, e12455. [Google Scholar] [CrossRef]
- Baskes, J. Colonial Institutions and Cross-Cultural Trade: Repartimiento Credit and Indigenous Production of Cochineal in Eighteenth-Century Oaxaca, Mexico. J. Econ. Hist. 2005, 65, 186–210. [Google Scholar] [CrossRef]
- Egger, P.H.; Von Ehrlich, M.; Nelson, D.R. Migration and Trade. World Econ. 2012, 35, 216–241. [Google Scholar] [CrossRef]
- Tadesse, B.; White, R. Cultural distance as a determinant of bilateral trade flows: Do immigrants counter the effect of cultural differences? Appl. Econ. Lett. 2010, 17, 147–152. [Google Scholar] [CrossRef]
- Holburn, G.L.F.; Zelner, B.A. Political capabilities, policy risk, and international investment strategy: Evidence from the global electric power generation industry. Strateg. Manag. J. 2010, 31, 1290–1315. [Google Scholar] [CrossRef]
- La Porta, R.; Lopez-de-Silanes, F.; Shleifer, A. The Economic Consequences of Legal Origins. J. Econ. Lit. 2008, 46, 285–332. [Google Scholar] [CrossRef]
- Knoben, J.; Oerlemans, L.A.G. Proximity and inter-organizational collaboration: A literature review. Int. J. Manag. Rev. 2006, 8, 71–89. [Google Scholar] [CrossRef]
- Aguiar, L.; Waldfogel, J. Netflix: Global hegemon or facilitator of frictionless digital trade? J. Cult. Econ. 2018, 42, 419–445. [Google Scholar] [CrossRef]
- Schofer, E.; Ramirez, F.O.; Meyer, J.W. The Effects of Science on National Economic Development, 1970 to 1990. Am. Sociol. Rev. 2000, 65, 866–887. [Google Scholar] [CrossRef]
- Du, L.Z.; Wang, Y.m.; Li, S. Research on the Industry Chain’s Governance Structure and Basic Models. China Ind. Econ. 2010, 3, 108–117. [Google Scholar]
- Pratono, A.H. Cross-cultural collaboration for inclusive global value chain: A case study of rattan industry. Int. J. Emerg. Mark. 2020, 15, 149–170. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, Z.J.; Liu, C.L.; Su, Y.S.; Zhang, X.Y. Community detection in complex networks with an ambiguous structure using central node based link prediction. Knowl.-Based Syst. 2020, 195, 105626. [Google Scholar] [CrossRef]
- Yin, J.; Zheng, X.M.; Li, S. Cooperation Situation and Power Role: Deconstruction of Tourism Cooperation Network of Countries along the Belt and Road Initiative. Econ. Geogr. 2019, 39, 216–224. [Google Scholar]
- Freeman, L.C. Centrality in Social Networks Conceptual Clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Liu, J. Integral Network Analysis (3rd Edition)—A Practical Guide to UCINET Software; Gezi Press: Shanghai, China, 2019; pp. 280–289. [Google Scholar]
- Han, X.Y.; Saiding, Q.; Cai, X.L.; Xiao, Y.; Wang, P.; Cai, Z.W.; Gong, X.; Gong, W.M.; Zhang, X.C.; Cui, W.G. Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds. Nano-Micro Lett. 2023, 15, 239. [Google Scholar] [CrossRef] [PubMed]
Level-One Variable | Level-Two Variable | Clarification | Data Source |
---|---|---|---|
Economic proximity | Gross Domestic Product (GDP) | The economic foundation of the country | World Bank |
GDP Growth Rate (GDPgro) | The country’s economic growth potential | World Bank | |
Political proximity | Foreign Direct Investment (FDI) | The openness of the country | World Bank |
Trade Condition Index (TCI) | A comparative index obtained by comparing the export price index with the import price index | World Bank | |
Geographical proximity | Geographical Distance (Dist) | The farther the geographical distance is, the higher the cost of trade transportation will be | French CEPII Database |
Contiguity (Contig) | Geographical contiguity: if the two countries have a common border, trade is smoother | French CEPII Database | |
Socio-cultural relations | Colonial Relationship (Col45) | If there is a colonial relationship between the two countries, the acceptance of products is higher in the process of trade | French CEPII Database |
Common Language (Comlang) | Two countries using the same language can reduce the cost of external communication | French CEPII Database | |
Total Population (TP) | The total population reflects the demand for cultural products | World Bank | |
Net Migration (Netmig) | Degree of cultural integration | World Bank | |
Institutional stability | Political Stability and Non-violence Index (PV) | A higher index indicates the political situation is relatively stable, which is conducive to trade | World Bank |
Institutional Composite Ranking (ICR) | It can be gained by comprehensively measuring the five aspects of national discourse power, government efficiency, quality supervision, corruption supervision, and laws and regulations | French CEPII Database | |
Digital technology | Internet Coverage (Cov) | The families who have Internet | ITU Database |
Industry chain | Printing Machine (Machine) | The upstream products of the printing industry chain | UNCOMTRADE |
Base Paper (Paper) | UNCOMTRADE | ||
Ink (Ink) | UNCOMTRADE |
Year | Node | Side | Network Density | Average Clustering Coefficient | Average Path Length |
---|---|---|---|---|---|
2002 | 160 | 1139 | 0.045 | 0.503 | 2.357 |
2003 | 169 | 1238 | 0.0444 | 0.510 | 2.283 |
2004 | 173 | 1326 | 0.045 | 0.527 | 2.359 |
2005 | 179 | 1434 | 0.045 | 0.503 | 2.402 |
2006 | 169 | 1255 | 0.045 | 0.429 | 2.471 |
2007 | 181 | 1612 | 0.049 | 0.511 | 2.348 |
2008 | 183 | 1739 | 0.052 | 0.535 | 2.297 |
2009 | 188 | 1654 | 0.047 | 0.513 | 2.384 |
2010 | 185 | 1660 | 0.049 | 0.530 | 2.415 |
2011 | 184 | 1745 | 0.052 | 0.548 | 2.342 |
2012 | 188 | 1751 | 0.050 | 0.521 | 2.382 |
2013 | 181 | 1768 | 0.054 | 0.542 | 2.274 |
2014 | 176 | 1730 | 0.056 | 0.529 | 2.265 |
2015 | 173 | 1637 | 0.055 | 0.512 | 2.27 |
2016 | 182 | 1632 | 0.050 | 0.468 | 2.365 |
2017 | 182 | 1647 | 0.050 | 0.506 | 2.331 |
2018 | 176 | 1679 | 0.055 | 0.523 | 2.338 |
2019 | 182 | 1666 | 0.051 | 0.472 | 2.338 |
2020 | 174 | 1530 | 0.051 | 0.488 | 2.357 |
2021 | 174 | 1593 | 0.053 | 0.485 | 2.313 |
Rank | Country (Region) | Year: 2002 | Country (Region) | Year: 2012 | Country (Region) | Year: 2021 |
---|---|---|---|---|---|---|
1 | UK | 0.914 | UK | 0.883 | UK | 0.895 |
2 | USA | 0.819 | USA | 0.813 | USA | 0.831 |
3 | France | 0.646 | Germany | 0.703 | Germany | 0.809 |
4 | Germany | 0.600 | France | 0.672 | France | 0.723 |
5 | Spain | 0.394 | China | 0.580 | China | 0.623 |
6 | Italy | 0.358 | The Netherlands | 0.418 | Italy | 0.509 |
7 | Guatemala | 0.354 | Spain | 0.413 | Spain | 0.447 |
8 | Jordan | 0.347 | Italy | 0.401 | The Netherlands | 0.430 |
9 | Iran | 0.343 | Hong Kong, China | 0.394 | Arabia | 0.412 |
10 | Malawi | 0.343 | Arabia | 0.393 | India | 0.392 |
11 | Serbia and Montenegro | 0.342 | Russia | 0.362 | Russia | 0.390 |
12 | Jamaica | 0.342 | Trinidad and Tobago | 0.350 | Switzerland | 0.388 |
13 | Qatar | 0.336 | Switzerland | 0.348 | Hong Kong, China | 0.382 |
14 | The Netherlands | 0.326 | Georgia | 0.347 | Poland | 0.360 |
15 | Singapore | 0.324 | India | 0.341 | Kazakhstan | 0.351 |
16 | Hong Kong, China | 0.318 | Namibia | 0.339 | Uzbekistan | 0.347 |
17 | Sweden | 0.313 | South Africa | 0.334 | Trinidad and Tobago | 0.343 |
18 | Japan | 0.306 | Japan | 0.303 | Iran | 0.341 |
19 | Denmark | 0.305 | Belgium | 0.303 | Belgium | 0.334 |
20 | Switzerland | 0.301 | Singapore | 0.300 | Canada | 0.323 |
21 | Russia | 0.301 | Australia | 0.299 | Malaysia | 0.305 |
22 | Belgium | 0.277 | Canada | 0.299 | Hungary | 0.301 |
23 | Austria | 0.273 | Malaysia | 0.298 | Denmark | 0.294 |
24 | Poland | 0.273 | the Czech Republic | 0.294 | Austria | 0.292 |
25 | Canada | 0.269 | Poland | 0.291 | Turkey | 0.290 |
26 | South Africa | 0.267 | Sweden | 0.291 | Romania | 0.283 |
27 | El Salvador | 0.263 | Denmark | 0.287 | South Africa | 0.282 |
28 | China | 0.260 | Mexico | 0.282 | Singapore | 0.281 |
29 | Hungary | 0.248 | Greece | 0.282 | Japan | 0.279 |
30 | Australia | 0.246 | Austria | 0.281 | Serbia | 0.279 |
Level-1 Variables | Level-2 Variables | 2002 | 2012 | 2021 | |||
---|---|---|---|---|---|---|---|
Coefficient | p Value | Coefficient | p Value | Coefficient | p Value | ||
Economic proximity | GDP | 0.257 | 0.020 | 0.248 | 0.006 | 0.273 | 0.004 |
GDPgro | −0.068 | 0.073 | −0.104 | 0.004 | −0.052 | 0.164 | |
Political proximity | FDI | 0.311 | 0.002 | 0.120 | 0.025 | 0.186 | 0.011 |
TCI | 0.028 | 0.232 | 0.037 | 0.185 | 0.063 | 0.041 | |
Geographical proximity | Dist | −0.224 | 0.000 | −0.233 | 0.000 | −0.218 | 0.000 |
Contig | 0.426 | 0.000 | 0.490 | 0.000 | 0.455 | 0.000 | |
Socio-cultural Relationship | Col45 | 0.423 | 0.000 | 0.279 | 0.003 | 0.192 | 0.015 |
Comlang | 0.240 | 0.000 | 0.225 | 0.000 | 0.197 | 0.000 | |
TP | −0.008 | 0.690 | 0.075 | 0.130 | 0.123 | 0.103 | |
Netmig | 0.195 | 0.032 | 0.214 | 0.024 | 0.226 | 0.003 | |
Institutional stability | PV | 0.024 | 0.172 | 0.113 | 0.001 | 0.094 | 0.001 |
ICR | 0.073 | 0.006 | 0.074 | 0.004 | 0.031 | 0.105 | |
Digital technology | Cov | 0.081 | 0.001 | −0.007 | 0.420 | 0.003 | 0.417 |
Industry chain | Machine | 0.554 | 0.000 | 0.649 | 0.000 | 0.640 | 0.000 |
Paper | 0.516 | 0.000 | 0.560 | 0.000 | 0.540 | 0.000 | |
Ink | 0.688 | 0.000 | 0.696 | 0.000 | 0.256 | 0.030 |
Year | Level-1 Variables | Level-2 Variables | Unstandardized Coefficient | Standardized Coefficient | Significance | Proportion as Large | Proportion as Small |
---|---|---|---|---|---|---|---|
2002 | Intercept | −0.013 | 0.000 | — | — | — | |
Economic proximity | GDP | −0.059 | −0.041 | 0.139 | 0.861 | 0.139 | |
GDPgro | −0.067 | −0.018 | 0.228 | 0.772 | 0.228 | ||
Political proximity | FDI | 0.160 | 0.068 | 0.058 | 0.058 | 0.943 | |
Geographical proximity | Dist | −0.236 | −0.044 | 0.015 | 0.986 | 0.015 | |
Contig | 0.116 | 0.161 | 0.000 | 0.000 | 1.000 | ||
Socio-cultural relationship | Col45 | 0.159 | 0.169 | 0.000 | 0.000 | 1.000 | |
Comlang | 0.097 | 0.085 | 0.000 | 0.000 | 1.000 | ||
Netmig | 0.281 | 0.118 | 0.018 | 0.018 | 0.983 | ||
Institutional stability | ICR | 0.004 | 0.020 | 0.086 | 0.086 | 0.914 | |
Digital technology | Cov | 0.002 | 0.012 | 0.196 | 0.196 | 0.805 | |
Industry chain | Machine | 0.153 | 0.152 | 0.002 | 0.002 | 0.998 | |
Paper | 0.171 | 0.160 | 0.000 | 0.000 | 1.000 | ||
Ink | 0.401 | 0.397 | 0.000 | 0.000 | 1.000 | ||
Gof | R2 | 0.585 | |||||
Adj R2 | 0.582 | ||||||
2012 | Intercept | −0.001 | 0.000 | — | — | — | |
Economic proximity | GDP | 0.137 | 0.082 | 0.068 | 0.068 | 0.932 | |
GDPgro | −0.050 | −0.011 | 0.321 | 0.680 | 0.321 | ||
Political proximity | FDI | −0.043 | −0.018 | 0.349 | 0.651 | 0.349 | |
Geographical proximity | Dist | −0.196 | −0.040 | 0.060 | 0.941 | 0.060 | |
Contig | 0.147 | 0.224 | 0.000 | 0.000 | 1.000 | ||
Socio-cultural relationship | Col45 | 0.093 | 0.109 | 0.000 | 0.000 | 1.000 | |
Comlang | 0.091 | 0.087 | 0.000 | 0.000 | 1.000 | ||
Netmig | 0.050 | 0.022 | 0.272 | 0.272 | 0.728 | ||
Institutional stability | ICR | 0.003 | 0.017 | 0.115 | 0.115 | 0.886 | |
Digital technology | Cov | 0.003 | 0.022 | 0.119 | 0.119 | 0.881 | |
Industry chain | Machine | 0.192 | 0.226 | 0.000 | 0.000 | 1.000 | |
Paper | 0.099 | 0.106 | 0.000 | 0.000 | 1.000 | ||
Ink | 0.290 | 0.325 | 0.000 | 0.000 | 1.000 | ||
Gof | R2 | 0.594 | |||||
Adj R2 | 0.592 | ||||||
2021 | Intercept | −0.001 | 0.000 | — | — | — | |
Economic proximity | GDP | 0.215 | 0.150 | 0.002 | 0.002 | 0.999 | |
Political proximity | FDI | −0.065 | −0.023 | 0.230 | 0.770 | 0.230 | |
TCI | 0.000 | 0.003 | 0.451 | 0.451 | 0.550 | ||
Geographical proximity | Dist | −0.309 | −0.063 | 0.005 | 0.996 | 0.005 | |
Contig | 0.173 | 0.258 | 0.000 | 0.000 | 1.000 | ||
Socio-cultural relationship | Col45 | 0.074 | 0.084 | 0.003 | 0.003 | 0.998 | |
Comlang | 0.076 | 0.072 | 0.001 | 0.001 | 0.999 | ||
Netmig | 0.143 | 0.052 | 0.067 | 0.067 | 0.933 | ||
Digital technology | Cov | 0.005 | 0.032 | 0.030 | 0.030 | 0.971 | |
Industry chain | Machine | 0.307 | 0.332 | 0.000 | 0.000 | 1.000 | |
Paper | 0.149 | 0.158 | 0.000 | 0.000 | 1.000 | ||
Ink | 0.019 | 0.022 | 0.158 | 0.158 | 0.843 | ||
Gof | R2 | 0.435 | |||||
Adj R2 | 0.432 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Ding, F.; Liu, T.; Zheng, Q. The Network Evolution and Influencing Factors of the Global Cultural Printed Material Trade. Sustainability 2025, 17, 918. https://doi.org/10.3390/su17030918
Wang L, Ding F, Liu T, Zheng Q. The Network Evolution and Influencing Factors of the Global Cultural Printed Material Trade. Sustainability. 2025; 17(3):918. https://doi.org/10.3390/su17030918
Chicago/Turabian StyleWang, Li, Fang Ding, Tao Liu, and Qingqing Zheng. 2025. "The Network Evolution and Influencing Factors of the Global Cultural Printed Material Trade" Sustainability 17, no. 3: 918. https://doi.org/10.3390/su17030918
APA StyleWang, L., Ding, F., Liu, T., & Zheng, Q. (2025). The Network Evolution and Influencing Factors of the Global Cultural Printed Material Trade. Sustainability, 17(3), 918. https://doi.org/10.3390/su17030918