Towards More Efficient PEM Fuel Cells Through Advanced Thermal Management: From Mechanisms to Applications
Abstract
:1. Introduction
2. Working Principle of PEMFC
2.1. Voltage Model
- : activation losses due to reaction kinetics; generally, it could be described by the Butler–Volmer equation or the simpler Tafel equation.
- : ohmic losses from charger transport, e.g., ionic and electronic resistance
- : concentration losses due to the mass transport of reactants and products inside a fuel cell stack.
2.2. Efficiency Model
3. Efficiency Improvement of PEMFC by Efficient Cooling
3.1. Demonstrations of Cooling Methods in PEMFC
3.2. Control Strategies Used in Cooling Systems of PEMFC
3.2.1. Optimum Control of PEMFC Temperature
3.2.2. Temperature Uniform Control of PEMFC
3.2.3. Reduction of Parasitic Power by Optimal Control
3.2.4. New Fundamental Strategy
4. Efficiency Improvement of PEMFC by Waste Heat Recovery
4.1. Overall Energy Distribution in PEMFC
4.2. Waste Heat Recovery Methods Investigated in PEMFC
4.2.1. Organic Rankine Cycle
Overheating/Recuperator | Waste Heat Source | Research Type | Organic Fluid | ORC Eff. | Overall Eff. | Improved Efficiency (Absolute Value) | Ref. |
---|---|---|---|---|---|---|---|
/ | 1007 kW Fuel cell | simulation | R123 R245ca R245fa | 10.94% 10.70% 10.59% | / | 5.24% 5.13% 5.08% | [106] |
With transcritical CO2 cycle and cold energy of liquefied natural gas | 1047 kW electric power output with 1190 kW heat | simulation | / | / | 72% | 33% | [109] |
ORC | 49.8 kW fuel cell | simulation | R245fa | 4.03% | / | / | [104] |
Heat pump and ORC | 49.8 kW fuel cell | Water for HP R123 for ORC | 4.73% | / | / | ||
Recuperator + Metal Hybrid for Hydrogen storage | 1180 kW fuel cell | simulation | R123 | 6.52% | 44.3% | 2.3% | [103] |
4.2.2. Other Thermodynamic Cycles
4.2.3. Combined Heat/Cooling and Power Based on PEMFC
4.2.4. Thermoelectric Generators
4.2.5. Metal Hydrides
5. Conclusions
- (1)
- Optimum operation temperature and control: Achieving a 2–3% increase in efficiency by maintaining the fuel cell stack at its optimal operating temperature. This is crucial for ensuring stable operation and maximizing performance, as the efficiency of the stack is greatly influenced by its temperature.
- (2)
- Parasitic power reduction: A further 1–2% efficiency gain can be realized by minimizing the parasitic power loss associated with auxiliary systems such as fans and water pumps and actuator valves.
- (3)
- Waste heat recovery: An additional 2–3% improvement in efficiency is feasible through the integration of an Organic Rankine Cycle (ORC) system for waste heat recovery. It is worth noting that the efficiency of the ORC system is bound by the Carnot cycle; its efficiency will further increase under cold conditions when the condenser working temperature becomes lower.
- (4)
- The provided information shall be valuable to guide the system layout and control strategies for ITMS with ORC at the early design stage.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wee, J.-H. Applications of proton exchange membrane fuel cell systems. Renew. Sustain. Energy Rev. 2007, 11, 1720–1738. [Google Scholar] [CrossRef]
- Wang, D.; Ling, X.; Peng, H.; Liu, L.; Tao, L. Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation. Energy 2013, 50, 343–352. [Google Scholar] [CrossRef]
- Zhou, F.; Joshi, S.N.; Rhote-Vaney, R.; Dede, E.M. A review and future application of Rankine Cycle to passenger vehicles for waste heat recovery. Renew. Sustain. Energy Rev. 2017, 75, 1008–1021. [Google Scholar] [CrossRef]
- Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Taghizadeh-Hesary, F. The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy 2022, 160, 112703. [Google Scholar] [CrossRef]
- Fan, L.; Tu, Z.; Chan, S.H. Recent development of hydrogen and fuel cell technologies: A review. Energy Rep. 2021, 7, 8421–8446. [Google Scholar] [CrossRef]
- Lohse-Busch, H.; Stutenberg, K.; Duoba, M.; Liu, X.; Elgowainy, A.; Wang, M.; Wallner, T.; Richard, B.; Christenson, M. Automotive fuel cell stack and system efficiency and fuel consumption based on vehicle testing on a chassis dynamometer at minus 18 °C to positive 35 °C temperatures. Int. J. Hydrogen Energy 2020, 45, 861–872. [Google Scholar] [CrossRef]
- Matsunaga, M.; Fukushima, T.; Ojima, K. Powertrain System of Honda FCX Clarity Fuel Cell Vehicle. World Electr. Veh. J. 2009, 3, 820–829. [Google Scholar] [CrossRef]
- Cullen, D.A.; Neyerlin, K.C.; Ahluwalia, R.K.; Mukundan, R.; More, K.L.; Borup, R.L.; Weber, A.Z.; Myers, D.J.; Kusoglu, A. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 2021, 6, 462–474. [Google Scholar] [CrossRef]
- Khanna, N.; Lu, H.; Fridley, D.; Zhou, N. Near and long-term perspectives on strategies to decarbonize China’s heavy-duty trucks through 2050. Sci. Rep. 2021, 11, 20414. [Google Scholar] [CrossRef]
- Figueroa-Santos, M.A.; Stefanopoulou, A.G. Fuel Cell Vehicle Optimization and Control. In Encyclopedia of Systems and Control; Baillieul, J., Samad, T., Eds.; Springer: London, UK, 2020; pp. 1–9. [Google Scholar]
- Wang, Y.; Ruiz Diaz, D.F.; Chen, K.S.; Wang, Z.; Adroher, X.C. Materials, technological status, and fundamentals of PEM fuel cells—A review. Mater. Today 2020, 32, 178–203. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Yang, J.; Lei, Y.; Wang, C.; Wang, J.; Tang, Y.; Mao, Z. Recent advances in Pt-based electrocatalysts for PEMFCs. RSC Adv. 2021, 11, 13316–13328. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, T.; Cao, Z.; Yuan, Z.; He, H.; Fan, M.; Jiang, Z. Advanced 3D ordered electrodes for PEMFC applications: From structural features and fabrication methods to the controllable design of catalyst layers. Green Energy Environ. 2023, 9, 1336–1365. [Google Scholar] [CrossRef]
- Gerling, C.; Hanauer, M.; Berner, U.; Friedrich, K.A.K. PEMFC Model Parameterization By Means of Differential Cell Polarization and Electrochemical Impedance Spectroscopy. ECS Meet. Abstr. 2020, MA2020-02, 3844. [Google Scholar] [CrossRef]
- Wang, J.; He, H.; Wu, Y.; Yang, C.; Zhang, H.; Zhang, Q.; Li, J.; Cheng, H.; Cai, W. Review on Electric Resistance in Proton Exchange Membrane Fuel Cells: Advances and Outlook. Energy Fuels 2024, 38, 2759–2776. [Google Scholar] [CrossRef]
- Tanaka, S.; Bradfield, W.W.; Legrand, C.; Malan, A.G. Numerical and experimental study of the effects of the electrical resistance and diffusivity under clamping pressure on the performance of a metallic gas-diffusion layer in polymer electrolyte fuel cells. J. Power Sources 2016, 330, 273–284. [Google Scholar] [CrossRef]
- Liu, Q.; Lan, F.; Chen, J.; Zeng, C.; Wang, J. A review of proton exchange membrane fuel cell water management: Membrane electrode assembly. J. Power Sources 2022, 517, 230723. [Google Scholar] [CrossRef]
- Kumar, R.; Subramanian, K.A. Enhancement of efficiency and power output of hydrogen fuelled proton exchange membrane (PEM) fuel cell using oxygen enriched air. Int. J. Hydrogen Energy 2023, 48, 6067–6075. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Zhang, A. Experimental study on temperature and performance of an open-cathode PEMFC stack under thermal radiation environment. Appl. Energy 2022, 311, 118646. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, S.; Lin, C. Performance improvement of fuel cell systems based on turbine design and supercharging system matching. Appl. Therm. Eng. 2020, 180, 115806. [Google Scholar] [CrossRef]
- Wu, B.; Matian, M.; Offer, G.J. Hydrogen PEMFC system for automotive applications. Int. J. Low-Carbon Technol. 2012, 7, 28–37. [Google Scholar] [CrossRef]
- Baz, F.B.; Elzohary, R.M.; Osman, S.; Marzouk, S.A.; Ahmed, M. A review of water management methods in proton exchange membrane fuel cells. Energy Convers. Manag. 2024, 302, 118150. [Google Scholar] [CrossRef]
- Kwan, T.H.; Katsushi, F.; Shen, Y.; Yin, S.; Zhang, Y.; Kase, K.; Yao, Q. Comprehensive review of integrating fuel cells to other energy systems for enhanced performance and enabling polygeneration. Renew. Sustain. Energy Rev. 2020, 128, 109897. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, L.; Li, J.; Hu, Z.; Ouyang, M. Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms. Energy 2019, 177, 386–396. [Google Scholar] [CrossRef]
- Quan, R.; Li, Z.; Liu, P.; Li, Y.; Chang, Y.; Yan, H. Minimum hydrogen consumption-based energy management strategy for hybrid fuel cell unmanned aerial vehicles using direction prediction optimal foraging algorithm. Fuel Cells 2023, 23, 221–236. [Google Scholar] [CrossRef]
- Yoshizumi, T.; Kubo, H.; Okumura, M. Development of High-Performance FC Stack for the New MIRAI; SAE Technical Paper Series; SAE International: Warrendale, PV, USA, 2021. [Google Scholar]
- Wilberforce, T.; Olabi, A.G.; Muhammad, I.; Alaswad, A.; Sayed, E.T.; Abo-Khalil, A.G.; Maghrabie, H.M.; Elsaid, K.; Abdelkareem, M.A. Recovery of waste heat from proton exchange membrane fuel cells—A review. Int. J. Hydrogen Energy 2022, 52, 933–972. [Google Scholar] [CrossRef]
- Rousseau, A. Impact of Fuel Cell System Peak Efficiency on Fuel Consumption and Cost; Argonne National Laboratory: Lemont, IL, USA, 2014. [Google Scholar]
- Kurnia, J.C.; Sasmito, A.P. Hydrogen Fuel Cell in Vehicle Propulsion: Performance, Efficiency, and Challenge. In Energy Efficiency in Mobility Systems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 9–26. [Google Scholar]
- Javaid, U.; Mehmood, A.; Arshad, A.; Imtiaz, F.; Iqbal, J. Operational Efficiency Improvement of PEM Fuel Cell—A Sliding Mode Based Modern Control Approach. IEEE Access 2020, 8, 95823–95831. [Google Scholar] [CrossRef]
- Guo, X.; Dong, Z.; Shen, J.; Xu, Y.; He, Q.; Zhao, X.; Ding, Z. Towards intelligent and integrated architecture for hydrogen fuel cell system challenges and approaches. Natl. Sci. Open 2023, 2, 20220038. [Google Scholar] [CrossRef]
- Wu, D.; Peng, C.; Yin, C.; Tang, H. Review of System Integration and Control of Proton Exchange Membrane Fuel Cells. Electrochem. Energy Rev. 2020, 3, 466–505. [Google Scholar] [CrossRef]
- Fan, L.; Tu, Z.; Chan, S.H. Recent development in design a state-of-art proton exchange membrane fuel cell from stack to system: Theory, integration and prospective. Int. J. Hydrogen Energy 2023, 48, 7828–7865. [Google Scholar] [CrossRef]
- Islam, M.R.; Shabani, B.; Rosengarten, G.; Andrews, J. The potential of using nanofluids in PEM fuel cell cooling systems: A review. Renew. Sustain. Energy Rev. 2015, 48, 523–539. [Google Scholar] [CrossRef]
- Xing, L.; Xiang, W.; Zhu, R.; Tu, Z. Modeling and thermal management of proton exchange membrane fuel cell for fuel cell/battery hybrid automotive vehicle. Int. J. Hydrogen Energy 2022, 47, 1888–1900. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, B.; Sobiesiak, A. Water and thermal management for Ballard PEM fuel cell stack. J. Power Sources 2005, 147, 184–195. [Google Scholar] [CrossRef]
- Javaid, U.; Iqbal, J.; Mehmood, A.; Uppal, A.A. Performance improvement in polymer electrolytic membrane fuel cell based on nonlinear control strategies-A comprehensive study. PLoS ONE 2022, 17, e0264205. [Google Scholar] [CrossRef]
- Wang, Q.; Li, B.; Yang, D.; Dai, H.; Zheng, J.P.; Ming, P.; Zhang, C. Research progress of heat transfer inside proton exchange membrane fuel cells. J. Power Sources 2021, 492, 20220038. [Google Scholar] [CrossRef]
- O’Hayre, R.; Cha, S.-W.; Colella, W.; Prinz, F.B. Chapter 2: Fuel Cell Thermodynamics. In Fuel Cell Fundamentals; John Wiley & Sons: New York, NY, USA, 2016; pp. 77–116. [Google Scholar]
- Amphlett, J.C.; Baumert, R.M.; Mann, R.F.; Peppley, B.A.; Roberge, P.R.; Harris, T.J. Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell: II. Empirical Model Development. J. Electrochem. Soc. 1995, 142, 9. [Google Scholar] [CrossRef]
- Benmouiza, K.; Cheknane, A. Analysis of proton exchange membrane fuel cells voltage drops for different operating parameters. Int. J. Hydrogen Energy 2018, 43, 3512–3519. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, J.; Wang, Y.; Yin, Y.; Jiao, K. Investigation of current density spatial distribution in PEM fuel cells using a comprehensively validated multi-phase non-isothermal model. Int. J. Heat Mass Transf. 2020, 150, 119294. [Google Scholar] [CrossRef]
- Wei, J.; Qi, M.; Zhang, H.; Li, X. Investigation on exhaust energy recovery system using radial turbine in high-power proton exchange membrane fuel cells. In Proceedings of the ASME Turbo Expo 2022,Turbomachinery Technical Conference and Exposition, Rotterdam, The Netherlands, 13–17 June 2022. [Google Scholar]
- Xu, B.; Li, D.; Ma, Z.; Zheng, M.; Li, Y. Thermodynamic Optimization of a High Temperature Proton Exchange Membrane Fuel Cell for Fuel Cell Vehicle Applications. Mathematics 2021, 9, 1792. [Google Scholar] [CrossRef]
- Abd El Monem, A.A.; Azmy, A.M.; Mahmoud, S.A. Effect of process parameters on the dynamic behavior of polymer electrolyte membrane fuel cells for electric vehicle applications. Ain Shams Eng. J. 2014, 5, 75–84. [Google Scholar] [CrossRef]
- Zhang, G.; Qu, Z.; Tao, W.-Q.; Mu, Y.; Jiao, K.; Xu, H.; Wang, Y. Advancing next-generation proton-exchange membrane fuel cell development in multi-physics transfer. Joule 2024, 8, 45–63. [Google Scholar] [CrossRef]
- Yan, Q.; Toghiani, H.; Causey, H. Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes. J. Power Sources 2006, 161, 492–502. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Rahbari, C.; Moosavian, S.M.A. Introducing a hybrid multi-generation fuel cell system, hydrogen production and cryogenic CO2 capturing process. Chem. Eng. Process. Process Intensif. 2017, 120, 134–147. [Google Scholar] [CrossRef]
- Cai, F.; Cai, S.; Tu, Z. Proton exchange membrane fuel cell (PEMFC) operation in high current density (HCD): Problem, progress and perspective. Energy Convers. Manag. 2024, 307, 118348. [Google Scholar] [CrossRef]
- Zhang, G.; Kandlikar, S.G. A critical review of cooling techniques in proton exchange membrane fuel cell stacks. Int. J. Hydrogen Energy 2012, 37, 2412–2429. [Google Scholar] [CrossRef]
- Fly, A.; Thring, R.H. A comparison of evaporative and liquid cooling methods for fuel cell vehicles. Int. J. Hydrogen Energy 2016, 41, 14217–14229. [Google Scholar] [CrossRef]
- Garrity, P.T.; Klausner, J.F.; Mei, R. A Flow Boiling Microchannel Evaporator Plate for Fuel Cell Thermal Management. Heat Transf. Eng. 2007, 28, 877–884. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Shabani, B. Proton exchange membrane fuel cells heat recovery opportunities for combined heating/cooling and power applications. Energy Convers. Manag. 2020, 204, 112328. [Google Scholar] [CrossRef]
- Hwang, S.H.; Kim, M.S. An experimental study on the cathode humidification and evaporative cooling of polymer electrolyte membrane fuel cells using direct water injection method at high current densities. Appl. Therm. Eng. 2016, 99, 635–644. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, C.; Wan, Z.; Chen, X.; Chan, S.H.; Tu, Z. Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review. Renew. Sustain. Energy Rev. 2022, 155, 111908. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, J.; Zhang, C.; Chin, C.S.; Ran, H.; Fan, M.; Du, K.; Shuai, Q. Cold start investigation of fuel cell vehicles with coolant preheating strategy. Appl. Therm. Eng. 2022, 201, 117816. [Google Scholar] [CrossRef]
- Sakajo, Y.; Yamamoto, T.; Okajima, M.; Kondo, Y.; Oide, H. Thermal Management System for Fuel Cell Vehicles. Denso Tech. Rev. 2019, 24. Available online: https://www.denso.com/jp/ja/-/media/global/business/innovation/review/24/24-doc-16-paper-11.pdf (accessed on 13 January 2025).
- Yan, X.; Peng, Y.; Shen, Y.; Shen, S.; Wei, G.; Yin, J.; Zhang, J. The use of phase-change cooling strategy in proton exchange membrane fuel cells: A numerical study. Sci. China Technol. Sci. 2021, 64, 2762–2770. [Google Scholar] [CrossRef]
- Choi, E.J.; Park, J.Y.; Kim, M.S. A comparison of temperature distribution in PEMFC with single-phase water cooling and two-phase HFE-7100 cooling methods by numerical study. Int. J. Hydrogen Energy 2018, 43, 13406–13419. [Google Scholar] [CrossRef]
- Luo, L.; Huang, B.; Xingying, B.; Cheng, Z.; Qifei, J. Temperature uniformity improvement of a proton exchange membrane fuel cell stack with ultra-thin vapor chambers. Appl. Energy 2020, 270, 115192. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Wang, C.; Zhou, T.; Zhang, X.; Zhang, Y.; Zhuge, W.; Sun, L. Comparison of organic coolants for boiling cooling of proton exchange membrane fuel cell. Energy 2023, 266, 126342. [Google Scholar] [CrossRef]
- Choi, E.J.; Park, J.Y.; Kim, M.S. Two-phase cooling using HFE-7100 for polymer electrolyte membrane fuel cell application. Appl. Therm. Eng. 2019, 148, 868–877. [Google Scholar] [CrossRef]
- Guo, J.; Li, Z.; Wei, L.; Fangming, J. A novel thermal management system with a heat-peak regulator for fuel cell vehicles. J. Clean. Prod. 2023, 414, 137712. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, F.; Yang, W.; Gui, Y.; Zhang, Y. A hybrid thermal management system with liquid cooling and composite phase change materials containing various expanded graphite contents for cylindrical lithium-ion batteries. Appl. Therm. Eng. 2022, 200, 117702. [Google Scholar] [CrossRef]
- James, B.D. Fuel Cell Cost and Performance Analysis. Available online: https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/review22/fc353_james_2022_o-pdf.pdf?Status=Master (accessed on 13 January 2025).
- Fan, L.; Liu, Y.; Luo, X.; Tu, Z.; Chan, S.H. Comparison and evaluation of mega watts proton exchange membrane fuel cell combined heat and power system under different waste heat recovery methods. Renew. Energy 2023, 210, 295–305. [Google Scholar] [CrossRef]
- Han, J.; Yu, S. Ram air compensation analysis of fuel cell vehicle cooling system under driving modes. Appl. Therm. Eng. 2018, 142, 530–542. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, M.; Zaman, S.; Xing, S.; Wang, M.; Wang, H.J. Thermal management system for liquid-cooling PEMFC stack: From primary configuration to system control strategy. eTransportation 2022, 12, 100165. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, J.; Kumar, L.; Jin, L.; Huang, L. Model-based decoupling control for the thermal management system of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2023, 48, 19196–19206. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, G.; Zhang, X.; Sun, C.; Jiao, K.; Wang, Y. Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability. Appl. Energy 2021, 286, 116496. [Google Scholar] [CrossRef]
- Rojas, J.D.; Kunusch, C.; Ocampo-Martinez, C.; Puig, V. Control-Oriented Thermal Modeling Methodology for Water-Cooled PEM Fuel-Cell-Based Systems. IEEE Trans. Ind. Electron. 2015, 62, 5146–5154. [Google Scholar] [CrossRef]
- Zhiani, M.; Majidi, S.; Silva, V.B.; Gharibi, H. Comparison of the performance and EIS (electrochemical impedance spectroscopy) response of an activated PEMFC (proton exchange membrane fuel cell) under low and high thermal and pressure stresses. Energy 2016, 97, 560–567. [Google Scholar] [CrossRef]
- Baroutaji, A.; Arjunan, A.; Ramadan, M.; Robinson, J.; Alaswad, A.; Abdelkareem, M.A.; Olabi, A.-G. Advancements and prospects of thermal management and waste heat recovery of PEMFC. Int. J. Thermofluids 2021, 9, 100064. [Google Scholar] [CrossRef]
- Desantes, J.M.; Novella, R.; Lopez-Juarez, M.; Nidaguila, I. Experimental assessment of a heavy-duty fuel cell system in relevant operating conditions. Appl. Energy 2024, 376, 124293. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, Z.; Wang, Y.; Yuan, H. PEM Fuel Cell Thermal Management Strategy Based on Multi-model Predictive Control. In Proceedings of the 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Shanghai, China, 8–11 July 2022; pp. 625–630. [Google Scholar]
- Hu, D.; Wang, Y.; Li, J.; Yang, Q.; Wang, J. Investigation of optimal operating temperature for the PEMFC and its tracking control for energy saving in vehicle applications. Energy Convers. Manag. 2021, 249, 114842. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, Y.; Xu, S. Experimental study of PEM fuel cell temperature characteristic and corresponding automated optimal temperature calibration model. Energy 2023, 283, 128456. [Google Scholar] [CrossRef]
- Qu, S.; Li, X.; Hou, M.; Shao, Z.; Yi, B. The effect of air stoichiometry change on the dynamic behavior of a proton exchange membrane fuel cell. J. Power Sources 2008, 185, 302–310. [Google Scholar] [CrossRef]
- Zhang, G.; Yuan, H.; Wang, Y.; Jiao, K. Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model. Appl. Energy 2019, 255, 113865. [Google Scholar] [CrossRef]
- Weng, X.; Huang, R.; Yu, X.; Chen, J.; Yang, A. Design and application of a thermal characteristic test platform for hydrogen fuel cells. Sci. Sin. Technol. 2023, 53, 363–374. [Google Scholar] [CrossRef]
- Cheng, S.; Fang, C.; Xu, L.; Li, J.; Ouyang, M. Model-based temperature regulation of a PEM fuel cell system on a city bus. Int. J. Hydrogen Energy 2015, 40, 13566–13575. [Google Scholar] [CrossRef]
- Marcinkoski, J.; Vijayagopal, R.; Adams, J.; James, B.; Kopasz, J.; Ahluwalia, R. Hydrogen Class 8 Long Haul Truck Targets. Available online: https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/19006_hydrogen_class8_long_haul_truck_targets.pdf?Status=Master (accessed on 10 January 2025).
- Ahn, J.-W.; Choe, S.-Y. Coolant controls of a PEM fuel cell system. J. Power Sources 2008, 179, 252–264. [Google Scholar] [CrossRef]
- Chang, G.; Xie, C.; Cui, X.; Wei, P. Research on Parasitic Power of Cooling Balance of Plant System for Proton Exchange Membrane Fuel Cell. J. Therm. Sci. Eng. Appl. 2023, 15, 041010. [Google Scholar] [CrossRef]
- Han, J.; Park, J.; Yu, S. Control strategy of cooling system for the optimization of parasitic power of automotive fuel cell system. Int. J. Hydrogen Energy 2015, 40, 13549–13557. [Google Scholar] [CrossRef]
- Zheng, C.H.; Kim, N.W.; Park, Y.I.; Lim, W.S.; Cha, S.W.; Xu, G.Q. The effect of battery temperature on total fuel consumption of fuel cell hybrid vehicles. Int. J. Hydrogen Energy 2013, 38, 5192–5200. [Google Scholar] [CrossRef]
- Song, Z.; Pan, Y.; Chen, H.; Zhang, T. Effects of temperature on the performance of fuel cell hybrid electric vehicles: A review. Appl. Energy 2021, 302, 117572. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Z.; Sun, Y.; Yang, S.; Deng, C. A Review on Temperature Control of Proton Exchange Membrane Fuel Cells. Processes 2021, 9, 235. [Google Scholar] [CrossRef]
- Kandidayeni, M.; Macias, A.; Boulon, L.; Kelouwani, S. Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies. Appl. Energy 2020, 274, 115293. [Google Scholar] [CrossRef]
- Tian, P.; Liu, X.; Luo, K.; Li, H.; Wang, Y. Deep learning from three-dimensional multiphysics simulation in operational optimization and control of polymer electrolyte membrane fuel cell for maximum power. Appl. Energy 2021, 288, 116632. [Google Scholar] [CrossRef]
- Kharat, R.S.; Suryaprakash Kalos, P.; Kachhoria, R.; Kadam, V.E.; Jaiswal, S.; Birari, D.; Devising Rajput, S.; Khadse, C.B. Thermal analysis of fuel cells in renewable energy systems using Generative Adversarial Networks (GANs) and Reinforcement learning. Therm. Sci. Eng. Prog. 2024, 54, 102816. [Google Scholar] [CrossRef]
- Sarani, I.; Bao, Z.; Huo, W.; Qin, Z.; Lai, Y.; Jiao, K. Applying phase change materials and predictive modeling to optimize proton exchange membrane fuel cells. Energy Convers. Manag. 2025, 325, 119421. [Google Scholar] [CrossRef]
- Feng, Z.; Huang, J.; Jin, S.; Wang, G.; Chen, Y. Artificial intelligence-based multi-objective optimisation for proton exchange membrane fuel cell: A literature review. J. Power Sources 2022, 520, 230808. [Google Scholar] [CrossRef]
- Oladosu, T.L.; Pasupuleti, J.; Kiong, T.S.; Koh, S.P.J.; Yusaf, T. Energy management strategies, control systems, and artificial intelligence-based algorithms development for hydrogen fuel cell-powered vehicles: A review. Int. J. Hydrogen Energy 2024, 61, 1380–1404. [Google Scholar] [CrossRef]
- Bao, C.; Ouyang, M.; Yi, B. Modeling and optimization of the air system in polymer exchange membrane fuel cell systems. J. Power Sources 2006, 156, 232–243. [Google Scholar] [CrossRef]
- Chen, F.; Pei, Y.; Jiao, J.; Chi, X.; Hou, Z. Energy flow and thermal voltage analysis of water-cooled PEMFC stack under normal operating conditions. Energy 2023, 275, 127254. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Duan, Y. Organic Rankine cycles using zeotropic mixtures driven by low-to-medium temperature thermal energy. J. Tsinghua Univ. 2022, 62, 693–703. [Google Scholar]
- Tchanche, B.F.; Papadakis, G.; Lambrinos, G.; Frangoudakis, A. Fluid selection for a low-temperature solar organic Rankine cycle. Appl. Therm. Eng. 2009, 29, 2468–2476. [Google Scholar] [CrossRef]
- Mansour, C.; Bou Nader, W.; Dumand, C.; Nemer, M. Waste heat recovery from engine coolant on mild hybrid vehicle using organic Rankine cycle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2018, 233, 2502–2517. [Google Scholar] [CrossRef]
- Park, B.-S.; Usman, M.; Imran, M.; Pesyridis, A. Review of Organic Rankine Cycle experimental data trends. Energy Convers. Manag. 2018, 173, 679–691. [Google Scholar] [CrossRef]
- Peris, B.; Navarro-Esbrí, J.; Molés, F. Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery. Appl. Therm. Eng. 2013, 61, 364–371. [Google Scholar] [CrossRef]
- Alijanpour sheshpoli, M.; Mousavi Ajarostaghi, S.S.; Delavar, M.A. Waste heat recovery from a 1180 kW proton exchange membrane fuel cell (PEMFC) system by Recuperative organic Rankine cycle (RORC). Energy 2018, 157, 353–366. [Google Scholar] [CrossRef]
- He, T.; Shi, R.; Peng, J.; Zhuge, W.; Zhang, Y. Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle. Energies 2016, 9, 267. [Google Scholar] [CrossRef]
- Furukawa, T.; Nakamura, M.; Machida, K.; Shimokawa, K. A Study of the Rankine Cycle Generating System for Heavy Duty HV Trucks; SAE Technical Paper Series; SAE International: Warrendale, PV, USA, 2014. [Google Scholar]
- Zhao, P.; Wang, J.; Gao, L.; Dai, Y. Parametric analysis of a hybrid power system using organic Rankine cycle to recover waste heat from proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2012, 37, 3382–3391. [Google Scholar] [CrossRef]
- Azad, A.; Fakhari, I.; Ahmadi, P.; Javani, N. Analysis and optimization of a fuel cell integrated with series two-stage organic Rankine cycle with zeotropic mixtures. Int. J. Hydrogen Energy 2022, 47, 3449–3472. [Google Scholar] [CrossRef]
- Liu, G.; Qin, Y.; Ji, D. Numerical investigation of organic fluid flow boiling for proton exchange membrane fuel cell cooling and waste heat recovery. Appl. Therm. Eng. 2023, 228, 120564. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Mohammadi, A.; Pourfayaz, F.; Mehrpooya, M.; Bidi, M.; Valero, A.; Uson, S. Thermodynamic analysis and optimization of a waste heat recovery system for proton exchange membrane fuel cell using transcritical carbon dioxide cycle and cold energy of liquefied natural gas. J. Nat. Gas Sci. Eng. 2016, 34, 428–438. [Google Scholar] [CrossRef]
- Bademlioglu, A.H.; Canbolat, A.S.; Yamankaradeniz, N.; Kaynakli, O. Investigation of parameters affecting Organic Rankine Cycle efficiency by using Taguchi and ANOVA methods. Appl. Therm. Eng. 2018, 145, 221–228. [Google Scholar] [CrossRef]
- Li, J.; Pei, G.; Li, Y.; Wang, D.; Ji, J. Energetic and exergetic investigation of an organic Rankine cycle at different heat source temperatures. Energy 2012, 38, 85–95. [Google Scholar] [CrossRef]
- Sadeghi, S.; Maghsoudi, P.; Shabani, B.; Gorgani, H.H.; Shabani, N. Performance analysis and multi-objective optimization of an organic Rankine cycle with binary zeotropic working fluid employing modified artificial bee colony algorithm. J. Therm. Anal. Calorim. 2018, 136, 1645–1665. [Google Scholar] [CrossRef]
- Omar, A.; Saghafifar, M.; Mohammadi, K.; Alashkar, A.; Gadalla, M. A review of unconventional bottoming cycles for waste heat recovery: Part II—Applications. Energy Convers. Manag. 2019, 180, 559–583. [Google Scholar] [CrossRef]
- Saghafifar, M.; Omar, A.; Mohammadi, K.; Alashkar, A.; Gadalla, M. A review of unconventional bottoming cycles for waste heat recovery: Part I—Analysis, design, and optimization. Energy Convers. Manag. 2019, 198, 110905. [Google Scholar] [CrossRef]
- Yari, M.; Mehr, A.S.; Zare, V.; Mahmoudi, S.M.S.; Rosen, M.A. Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source. Energy 2015, 83, 712–722. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Z.; Wang, M.; Dai, Y. Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink. Energy 2013, 50, 513–522. [Google Scholar] [CrossRef]
- Zare, V.; Mahmoudi, S.M.S. A thermodynamic comparison between organic Rankine and Kalina cycles for waste heat recovery from the Gas Turbine-Modular Helium Reactor. Energy 2015, 79, 398–406. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Q.; Wang, M.; Feng, X. Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery. Energy Convers. Manag. 2017, 143, 482–492. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, H.; Lee, H. Cold-start performance investigation of fuel cell electric vehicles with heat pump-assisted thermal management systems. Energy 2021, 232, 121001. [Google Scholar] [CrossRef]
- Quan, R.; Yang, Z.; Qiu, Z.; Li, X.; Chang, Y. Thermal performance simulation and numerical analysis of a fuel cell waste heat utilization system for automotive application. Appl. Therm. Eng. 2024, 252, 123719. [Google Scholar] [CrossRef]
- Li, L.; Liu, Z.; Deng, C.; Xie, N.; Ren, J.; Sun, Y.; Xiao, Z.; Lei, K.; Yang, S. Thermodynamic and exergoeconomic analyses of a vehicular fuel cell power system with waste heat recovery for cabin heating and reactants preheating. Energy 2022, 247, 123465. [Google Scholar] [CrossRef]
- Shabani, B.; Andrews, J. An experimental investigation of a PEM fuel cell to supply both heat and power in a solar-hydrogen RAPS system. Int. J. Hydrogen Energy 2011, 36, 5442–5452. [Google Scholar] [CrossRef]
- Nasri, M.; Bürger, I.; Michael, S.; Friedrich, H.E. Waste heat recovery for fuel cell electric vehicle with thermochemical energy storage. In Proceedings of the 2016 Eleventh International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 6–8 April 2016; pp. 1–6. [Google Scholar]
- Wang, H.; Yu, G.; Liu, Y.; Li, J.; Li, L.; Lv, N.; You, R. Experimental Research on the Proton Exchange Membrane Fuel Cell Waste Heat Recovery System. In Proceedings of the 2023 8th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 22–25 September 2023; pp. 1841–1846. [Google Scholar]
- Yousefi, M.; Ehyaei, M.A.; Rosen, M.A. Optimizing a New Configuration of a Proton Exchange Membrane Fuel Cell Cycle With Burner and Reformer Through a Particle Swarm Optimization Algorithm for Residential Applications. J. Electrochem. Energy Convers. Storage 2019, 16, 041009. [Google Scholar] [CrossRef]
- Li, Z.; Li, W.; Chen, Z. Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant. Energies 2017, 10, 1489. [Google Scholar] [CrossRef]
- Cho, K.-C.; Shin, K.-Y.; Shim, J.; Bae, S.-S.; Kwon, O.-D. Performance Analysis of a Waste Heat Recovery System for a Biogas Engine Using Waste Resources in an Industrial Complex. Energies 2024, 17, 727. [Google Scholar] [CrossRef]
- Liebl, J.; Neugebauer, S.; Eder, A.; Linde, M.; Mazar, B.; Stütz, W. The thermoelectric generator from BMW is making use of waste heat. MTZ Worldw. 2009, 70, 4–11. [Google Scholar] [CrossRef]
- Mori, M.; Yamagami, T.; Sorazawa, M.; Miyabe, T.; Takahashi, S.; Haraguchi, T. Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid. SAE Int. J. Mater. Manuf. 2011, 4, 1268–1276. [Google Scholar] [CrossRef]
- Goldsmid, H. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation. Materials 2014, 7, 2577–2592. [Google Scholar] [CrossRef]
- Orr, B.; Akbarzadeh, A.; Mochizuki, M.; Singh, R. A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Appl. Therm. Eng. 2016, 101, 490–495. [Google Scholar] [CrossRef]
- Hasani, M.; Rahbar, N. Application of thermoelectric cooler as a power generator in waste heat recovery from a PEM fuel cell—An experimental study. Int. J. Hydrogen Energy 2015, 40, 15040–15051. [Google Scholar] [CrossRef]
- Cheng, L.; Guo, Z.; Xia, G. A Review on Research and Technology Development of Green Hydrogen Energy Systems with Thermal Management and Heat Recovery. Heat Transf. Eng. 2023, 45, 300–322. [Google Scholar] [CrossRef]
- Lu, B.; Zhang, Z.; Cai, J.; Wang, W.; Ju, X.; Xu, Y.; Lu, X.; Tian, H.; Shi, L.; Shu, G. Integrating engine thermal management into waste heat recovery under steady-state design and dynamic off-design conditions. Energy 2023, 272, 127145. [Google Scholar] [CrossRef]
- Mensharapov, R.M.; Ivanova, N.A.; Spasov, D.D.; Bakirov, A.V.; Fateev, V.N. PEMFC performance at nonstandard operating conditions: A review. Int. J. Hydrogen Energy 2024, 96, 664–679. [Google Scholar] [CrossRef]
- Kwon, L.; Kang, J.-G.; Baik, K.D.; Kim, K.; Ahn, C. Advancement and applications of PEMFC energy systems for large-class unmanned underwater vehicles: A review. Int. J. Hydrogen Energy 2024, 79, 277–294. [Google Scholar] [CrossRef]
Cooling Strategy | Techniques | Advantages | Disadvantages/Challenges |
---|---|---|---|
Liquid cooling | -Cooling channels integrated in bipolar plates | -Strong cooling capability -Flexible control of cooling capability -Cost and space | -Radiator size -Cooling fan size -Coolant degradation -Large parasitic power |
Phase change cooling | -Through flow-boiling | -Elimination of coolant pump -Simplified system -Cooling homogeneity | -Development of suitable working media -Cold start -Cost, space, and weight -Instant high cooling power -Engineering experience |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Dong, Z.; Zhang, X.; Zhang, C.; Iqbal, A.; Chen, J. Towards More Efficient PEM Fuel Cells Through Advanced Thermal Management: From Mechanisms to Applications. Sustainability 2025, 17, 943. https://doi.org/10.3390/su17030943
Wu Q, Dong Z, Zhang X, Zhang C, Iqbal A, Chen J. Towards More Efficient PEM Fuel Cells Through Advanced Thermal Management: From Mechanisms to Applications. Sustainability. 2025; 17(3):943. https://doi.org/10.3390/su17030943
Chicago/Turabian StyleWu, Qian, Zhiliang Dong, Xinfeng Zhang, Chaokai Zhang, Atif Iqbal, and Jian Chen. 2025. "Towards More Efficient PEM Fuel Cells Through Advanced Thermal Management: From Mechanisms to Applications" Sustainability 17, no. 3: 943. https://doi.org/10.3390/su17030943
APA StyleWu, Q., Dong, Z., Zhang, X., Zhang, C., Iqbal, A., & Chen, J. (2025). Towards More Efficient PEM Fuel Cells Through Advanced Thermal Management: From Mechanisms to Applications. Sustainability, 17(3), 943. https://doi.org/10.3390/su17030943