Sustainable Lightweight Concrete Designed with Modified Solidified Wastewater Sludge as Partial Replacement of Cement
Abstract
:1. Introduction
1.1. Wastewater Sludge (WWS)
1.2. Lightweight Concrete and Its Application
2. Experimental Work
2.1. Materials
2.2. The Preparation of the Mortar and Concrete Samples
2.3. Methods
2.3.1. Component Materials
2.3.2. Mortars
2.3.3. Lightweight Concrete
2.3.4. Human Reaction to Use of Waste Materials in Structural Materials
3. Results
3.1. Modified Solidified Wastewater Sludge (MWS)
3.1.1. Particle Size and Particle Size Distribution
3.1.2. XRF
3.1.3. Scanning Electron Microscopy (SEM)
3.1.4. Thermal Stability and Degradation (TGA)
3.1.5. Mortar Mixtures
3.2. Lightweight Concrete (LWC)
3.2.1. Bulk Density of LWC
3.2.2. Compressive Strength
3.2.3. Water Permeability Test and Frost Resistance
3.2.4. Concrete Leaching Test
3.3. The Role of the Human Factor
4. Discussion of Results
4.1. Properties of MWS
4.2. Properties of Mortars Containing MWS
4.3. Properties of Lightweight Concrete Containing MWS
4.4. A Discussion on the Factors Influencing Citizens’ Willingness to Use MSW in Concrete
4.5. Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
C&D | construction and demolition |
DWS | drinking water sludge |
FA | fly ash |
LWA | lightweight aggregate |
LWC | lightweight concrete |
MWS | modified solidified wastewater sludge |
SAI | strength activity index |
SCM | supplementary cementitious material |
SEM | scanning electron microscopy |
SW | solidified wastewater sludge |
TGA | thermogravimetric analysis |
WWS | wastewater sludge |
WWSA | wastewater sludge ash |
References
- Tafesse, S.; Girma, Y.E.; Dessalegn, E. Analysis of the socio-economic and environmental impacts of construction waste and management practices. Heliyon 2022, 8, e09169. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Lu, Y.; Zhou, J.; Song, S.; Yang, L.; Cheng, T.; Huang, J. Compressive strength of waste-derived cementitious composites using machine learning. Rev. Adv. Mater. Sci. 2024, 63, 20240008. [Google Scholar] [CrossRef]
- Tripathi, P.; Basu, D.; Pal, P. Environmental impact of recycling sewage sludge into cementitious matrix: A review. Mater. Today Proc. 2023, 78, 179–188. [Google Scholar] [CrossRef]
- Heniegal, A.M.; Ramadan, M.A.; Naguib, A.; Agwa, I.S. Study on properties of clay brick incorporating sludge of water treatment plant and agriculture waste. Case Stud. Constr. Mater. 2020, 13, e00397. [Google Scholar] [CrossRef]
- He, Z.H.; Han, X.D.; Jin, J.X.; Li, J.S.; Tang, W.; Shi, J.Y. Recycling of water treatment sludge in concrete: The role of water-binder ratio from a nanoscale perspective. Sci. Total Environ. 2023, 873, 162456. [Google Scholar] [CrossRef]
- de Godoy, L.G.G.; Rohden, A.B.; Garcez, M.R.; da Costa, E.B.; Da Dalt, S.; de Oliveira Andrade, J.J. Valorization of Water Treatment Sludge Waste by Application as Supplementary Cementitious Material. Constr. Build. Mater. 2019, 223, 939–950. [Google Scholar] [CrossRef]
- Lynn, C.J.; Dhir, R.K.; Ghataora, G.S.; West, R.P. Sewage sludge ash characteristics and potential for use in concrete. Constr. Build. Mater. 2015, 98, 767–779. [Google Scholar] [CrossRef]
- Mañosa, J.; Formosa, J.; Giro-Paloma, J.; Maldonado-Alameda, A.; Quina, M.J.; Chimenos, J.M. Valorisation of water treatment sludge for lightweight aggregate production. Constr. Build. Mater. 2021, 269, 121335. [Google Scholar] [CrossRef]
- Mojapelo, K.S.; Kupolati, W.K.; Ndambuki, J.M.; Sadiku, E.R.; Ibrahim, I.D. Utilization of wastewater sludge for lightweight concrete and the use of wastewater as curing medium. Case Stud. Constr. Mater. 2021, 15, e00667. [Google Scholar] [CrossRef]
- Chang, Z.; Long, G.; Xie, Y.; Zhou, J.L. Recycling sewage sludge ash and limestone for sustainable cementitious material production. J. Build. Eng. 2022, 49, 104035. [Google Scholar] [CrossRef]
- Pang, D.; Mao, Y.; Jin, Y.; Song, Z.; Wang, X.; Li, J.; Wang, W. Review on the use of sludge in cement kilns: Mechanism, technical, and environmental evaluation. Process Saf. Environ. Prot. 2023, 172, 1072–1086. [Google Scholar] [CrossRef]
- Bertanza, G.; Baroni, P.; Canato, M. Ranking sewage sludge management strategies by means of Decision Support Systems: A case study. Resour. Conserv. Recycl. 2016, 110, 1–15. [Google Scholar] [CrossRef]
- Das, T.; Al-Waili, I.; Balasubramanian, V.; Appleby, G.; Kaparaju, P.; Parthasarathy, R.; Eshtiaghi, N. Process modelling and techno-economic analysis of anaerobic digestion of sewage sludge integrated with wet oxidation using a gravity pressure vessel and thermal hydrolysis. Sci. Total Environ. 2024, 912, 169024. [Google Scholar] [CrossRef]
- Chiou, I.J.; Wang, K.S.; Chen, C.H.; Lin, Y.T. Lightweight aggregate made from sewage sludge and incinerated ash. Waste Manag. 2006, 26, 1453–1461. [Google Scholar] [CrossRef]
- Vouk, D.; Nakic, D.; Stirmer, N.; Cheeseman, C.R. Use of sewage sludge ash in cementitious materials. Rev. Adv. Mater. Sci. 2017, 49, 158–170. [Google Scholar]
- Nakic, D.; Vouk, D.; Serdar, M.; Cheeseman, C.R. Use of MID-MIX® treated sewage sludge in cement mortars and concrete. Eur. J. Environ. Civ. Eng. 2020, 24, 1483–1498. [Google Scholar] [CrossRef]
- Govedarica, O.; Aškrabić, M.; Hadnađev-Kostić, M.; Vulić, T.; Lekić, B.; Rajaković-Ognjanović, V.; Zakić, D. Evaluation of solidified wastewater treatment sludge as a potential SCM in pervious concrete pavements. Materials 2022, 15, 4919. [Google Scholar] [CrossRef]
- Kumar, R.; Srivastava, A.; Lakhani, R. Industrial wastes-cum-strength enhancing additives incorporated lightweight aggregate concrete (LWAC) for energy-efficient building: A comprehensive review. Sustainability 2022, 14, 331. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Hakamy, A.; Amin, M.; Zeyad, A.M.; Agwa, I.S. Effect of air agent on mechanical properties and microstructure of lightweight geopolymer concrete under high temperature. Case Stud. Constr. Mater. 2022, 16, e00951. [Google Scholar] [CrossRef]
- Youssf, O.; Hassanli, R.; Elchalakani, M.; Mills, J.E.; Tayeh, B.A.; Saad, I. Punching shear behaviour and repair efficiency of reinforced eco-friendly lightweight concrete slabs. Eng. Struct. 2023, 281, 115805. [Google Scholar] [CrossRef]
- Junaid, M.F.; ur Rehman, Z.; Kuruc, M.; Medved, I.; Bačinskas, D.; Čurpek, J.; Čekon, M.; Ijaz, N.; Ansari, W.S. Lightweight concrete from a perspective of sustainable reuse of waste byproducts. Constr. Build. Mater. 2022, 319, 126061. [Google Scholar] [CrossRef]
- Kwek, S.Y.; Awang, H. Utilization of industrial waste materials for the production of lightweight aggregates: A review. J. Sustain. Cem. Mater. 2021, 10, 353–381. [Google Scholar] [CrossRef]
- Mo, K.H.; Ling, T.C.; Alengaram, U.J.; Yap, S.P.; Yuen, C.W. Overview of supplementary cementitious materials usage in lightweight aggregate concrete. Constr. Build. Mater. 2017, 139, 403–418. [Google Scholar] [CrossRef]
- Islam, M.M.U.; Li, J.; Roychand, R.; Saberian, M. A compact review on the waste-based lightweight concrete: Advancement and possibilities. In Nanotechnology in Construction for Circular Economy, Proceedings of the NICOM7, Melbourne, Australia, 31 October–2 November 2022; Springer Nature: Singapore, 2023; Volume 356, pp. 151–164. [Google Scholar]
- Aškrabić, M.; Zakić, D.; Savić, A.; Radević, A.; Stojanović, I. Possibilities for application of modified solidified water treatment sludge as supplementary cementitious material. In Proceedings of the International RILEM Conference on Synergising Expertise Towards Sustainability and Robustness of Cement-Based Materials and Concrete Structure, Milos, Greece, 14–16 June 2023; pp. 209–217. [Google Scholar]
- EN 1015-3:1999; Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (By Flow Table). European Committee for Standardization: Brussels, Belgium, 1999.
- EN 1015-7:1998; Methods of Test for Mortar for Masonry—Part 7: Determination of Air Content of Fresh Mortar. European Committee for Standardization: Brussels, Belgium, 1998.
- EN 1015-11:2019; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization: Brussels, Belgium, 2019.
- SRPS U.M8.002:1997; Mortars for Masonry and Plastering—Test Methods. Institute for Standardization of Serbia: Belgrade, Serbia, 1997.
- EN 12390-8:2019; Testing Hardened Concrete—Part 8: Depth of Penetration of Water Under Pressure. European Committee for Standardization: Brussels, Belgium, 2019.
- SRPS U.M1.206:2023; Concrete—Guidance and Rules for National Technical Requirements for Production of Concrete Applied in Concrete, Reinforced Concrete, and Prestressed Concrete Structures, Appendix D: Testing of Frost Resistance. Institute for Standardization: Belgrade, Serbia, 2023.
- United States Environmental Protection Agency. SW-846 Test Method 1311: Toxicity Characteristic Leaching Procedure. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/1311.pdf (accessed on 25 December 2024).
- Al-Khatib, I.A.; Ajlouny, H.; Al-Sari’, M.I.; Kontogianni, S. Residents’ concerns and attitudes toward solid waste management facilities in Palestine: A case study of Hebron district. Waste Manag. Res. 2014, 32, 228–236. [Google Scholar] [CrossRef]
- Song, Q.; Wang, Z.; Li, J. Exploring residents’ attitudes and willingness to pay for solid waste management in Macau. Environ. Sci. Pollut. Res. 2016, 23, 16456–16462. [Google Scholar] [CrossRef]
- Afflerbach, S.; Trettin, R. A fundamental study on the mechanistic impact of repeated de- and rehydration of Ca(OH)2 on thermochemical cycling in technical scale. Adv. Mater. Lett. 2019, 10, 312–318. [Google Scholar] [CrossRef]
- Sathya, B.; Rajathi, K.; Sridhar, S. Synthesis and characterization of Ca(OH)2 nanoparticles in different media. J. Biol. Chem. Res. 2018, 35, 877–882. [Google Scholar]
- Guo, X.; Liu, L.; Wang, W.; Zhang, J.; Wang, Y.; Yu, S.H. Controlled crystallization of hierarchical and porous calcium carbonate crystals using polypeptide type block copolymer as crystal growth modifier in a mixed solution. CrystEngComm 2011, 13, 2054–2061. [Google Scholar] [CrossRef]
- EN 206:2013; Concrete—Specification, Performance, Production, and Conformity. European Committee for Standardization: Brussels, Belgium, 2013.
- Svetozarević, S.; Rajaković-Ognjanović, V.; Lekić, B.; Savić, A. Multifunctional porous pavement prototype for urban pluvial flood protection: Preliminary findings on contribution of attitudes to acceptance willingness toward proposed scientific and engineering solutions. Int. J. Integr. Eng. 2024, 16, 90–103. [Google Scholar] [CrossRef]
- Heidrich, O.; Harvey, J. An examination into recycling and waste management attitudes and behaviors by UK employees. Environ. Eng. Manag. J. 2018, 17, 71–81. [Google Scholar] [CrossRef]
- Ugulu, I. A quantitative investigation on recycling attitudes of gifted/talented students. Biotechnol. Biotechnol. Equip. 2015, 29, S20–S26. [Google Scholar] [CrossRef]
- Baawain, M.S.; Al-Mamun, A.; Omidvarborna, H.; Al-Mujaini, F.; Choudri, B.S. Residents’ concerns and attitudes towards municipal solid waste management: Opportunities for improved management. Int. J. Environ. Waste Manag. 2019, 24, 93–106. [Google Scholar] [CrossRef]
- Ng, P.L.; Chen, J.J.; Kwan, A.K.H. Improving particle size distribution in cement paste by blending with superfine cement. J. Sustain. Archit. Civ. Eng. 2016, 16, 108–120. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.S.; Poon, C.S. Combined use of sewage sludge ash and recycled glass cullet for the production of concrete blocks. J. Clean. Prod. 2018, 171, 1447–1459. [Google Scholar] [CrossRef]
- Rashid, I.; Daraghmeh, N.H.; Al Omari, M.M.; Chowdhry, B.Z.; Leharne, S.A.; Hodali, H.A.; Badwan, A.A. Magnesium silicate. In Profiles of Drug Substances, Excipients and Related Methodology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 36, pp. 241–285. [Google Scholar]
- Saikia, N.; Kato, S.; Kojima, T. Compositions and leaching behaviours of combustion residues. Fuel 2006, 85, 264–271. [Google Scholar] [CrossRef]
- Garcés, P.; Pérez Carrión, M.; García-Alcocel, E.; Payá, J.; Monzó, J.; Borrachero, M.V. Mechanical and physical properties of cement blended with sewage sludge ash. Waste Manag. 2008, 28, 2495–2502. [Google Scholar] [CrossRef]
- Chang, F.C.; Lin, J.D.; Tsai, C.C.; Wang, K.S. Study on cement mortar and concrete made with sewage sludge ash. Water Sci. Technol. 2010, 62, 1689–1693. [Google Scholar] [CrossRef] [PubMed]
- Baeza, F.; Payá, J.; Galao, O.; Saval, J.M.; Garcés, P. Blending of industrial waste from different sources as partial substitution of Portland cement in pastes and mortars. Constr. Build. Mater. 2014, 66, 645–653. [Google Scholar] [CrossRef]
- Fontes, C.M.A.; Barbosa, M.C.; Toledo Filho, R.D.; Goncalves, J.P. Potentiality of sewage sludge ash as mineral additive in cement mortar and high performance concrete. In Proceedings of the Use of Recycled Materials in Buildings and Structures (RILEM Publications), Barcelona, Spain, 8–11 November 2004; pp. 797–806. [Google Scholar]
- Pinarli, V.; Kaymal, G. An innovative sludge disposal option—Reuse of sludge ash by incorporation in construction materials. Environ. Technol. 1994, 15, 843–852. [Google Scholar] [CrossRef]
- Luo, H.L.; Chang, W.C.; Lin, D.F. The effects of different types of nano-silicon dioxide additives on the properties of sludge ash mortar. J. Air Waste Manag. Assoc. 2009, 59, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Tempest, B.Q.; Pando, M.A. Characterization and demonstration of reuse applications of sewage sludge ash. Int. J. GEOMATE 2013, 4, 552–559. [Google Scholar]
- Gu, C.; Shuang, Y.; Ji, Y.; Wei, H.; Yang, Y.; Xu, Y.; Qian, R.; Cui, D.; Zhou, H. Effect of environmental conditions on the volume deformation of cement mortars with sewage sludge ash. J. Build. Eng. 2023, 65, 105720. [Google Scholar] [CrossRef]
- De Carvalho Gomes, S.; Zhou, J.L.; Li, W.; Long, G. Progress in manufacture and properties of construction materials incorporating water treatment sludge: A review. Resour. Conserv. Recycl. 2019, 145, 148–159. [Google Scholar] [CrossRef]
- Walker, A. Project Management in Construction, 6th ed.; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Soma, K.; Vatn, A. Representing the common goods—Stakeholders vs. citizens. Land Use Policy 2014, 41, 325–333. [Google Scholar] [CrossRef]
- Andersson, R.; Buser, M. From waste to resource management? Construction and demolition waste management through the lens of institutional work. Constr. Manag. Econ. 2022, 40, 477–496. [Google Scholar] [CrossRef]
- Dixit, M.; Srivastava, J.B. Utilization of treated wastewater dry sludge for lightweight concrete and the use of treated wastewater as a curing medium. World J. Adv. Res. Rev. 2023, 20, 59–71. [Google Scholar] [CrossRef]
Type of Application | Cost per Ton (EUR) |
---|---|
Agricultural use | 40–60 |
Landfilling | 60–100 |
Incineration | 60–100 |
Use of dry sludge in cement kilns | 10–40 |
Anaerobic digestion of sewage sludge integrated with wet oxidation | 230–415 |
Oxide | SWS (%) | Sand (0/4 mm) (%) |
---|---|---|
Loss on ignition at 1000 °C | 26.9 | 2.78 |
CaO | 71.7 | 4.21 |
SiO2 | 0.14 | 80.5 |
Al2O3 | 0.14 | 3.90 |
Fe2O3 | 0.03 | 4.32 |
MgO | 0.51 | 1.38 |
SO3 | 0.27 | 0.04 |
K2O | 0.07 | 1.10 |
Na2O | 0.01 | 1.09 |
TiO2 | - | 0.21 |
Mixture | MWS% | Cement | MWS | Aggregate | Water [kg/m3] |
---|---|---|---|---|---|
R * | 0 | 483 | - | 1450 | 265 |
I | 10 | 435 | 48 | 1450 | 265 |
II | 20 | 386 | 97 | 1450 | 265 |
III | 30 | 338 | 145 | 1450 | 265 |
Material | LWC-R | LWC-I |
---|---|---|
Cement—CEM II 42.5 R (A-L) | 430 | 345 |
MWS | 0 | 86 |
Expanded clay—1/4 mm | 240 | 200 |
River sand—0/4 mm | 970 | 1050 |
Water | 210 | 168 |
Superplasticizer | 2.15 | 2.15 |
Bulk density | 1850 | 1849 |
Mixture | Bulk Density (kg/m3) | Slump Flow Diameter (mm) |
---|---|---|
Reference | 2221 | 150 |
I | 2175 | 156 |
II | 2174 | 157 |
III | 2175 | 150 |
No. | Parameter (mg/kg) | LWC-R | LWC-I (1) | LWC-I (2) |
---|---|---|---|---|
1. | Arsenic (As) | <0.2 | <0.2 | <0.2 |
2. | Barium (Ba) | 5.3 | 6.8 | 5.3 |
3. | Cadmium (Cd) | <0.05 | <0.05 | <0.05 |
4. | Chromium (Cr) | <0.5 | 0.52 | 0.65 |
5. | Copper (Cu) | <0.5 | 0.5 | <0.5 |
6. | Molybdenum (Mo) | <0.5 | <0.5 | <0.5 |
7. | Mercury (Hg) | <0.1 | <0.1 | <0.1 |
8. | Nickel (Ni) | <0.2 | <0.2 | <0.2 |
9. | Lead (Pb) | <2 | <2 | <2 |
10. | Antimony (Sb) | <0.5 | <0.5 | <0.5 |
11. | Selenium (Se) | 0.39 | 0.47 | 0.44 |
12. | Zinc (Zn) | <1 | <1 | <1 |
Variable | M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|---|
Age (1) | 29.95 | 13.56 | — | ||||||
Air pollution (2) | 8.09 | 1.59 | 0.01 | ||||||
Water pollution (3) | 8.41 | 1.31 | −0.10 * | 0.69 ** | |||||
Solid waste pollution (4) | 7.59 | 1.73 | 0.07 | 0.61 ** | 0.51 ** | ||||
AMSW(5) | 39.43 | 8.23 | 0.05 | 0.20 ** | 0.15 ** | 0.28 ** | |||
WMSW (6) | 41.54 | 10.91 | 0.04 | 0.21 ** | 0.17 ** | 0.25 ** | 0.62 ** | ||
Financing MSW (7) | 3.30 | 1.07 | 0.02 | 0.15 ** | 0.09 * | 0.14 ** | 0.37 ** | 0.48 ** | — |
Male | Female | |||
---|---|---|---|---|
M | SD | M | SD | |
Gender | 40.40 | 11.21 | 42.19 | 10.70 |
95% Confidence Interval of the Difference | ||||||||
---|---|---|---|---|---|---|---|---|
t | df | p | Mean Difference | Lower | Upper | Cohen’s d | r | |
Gender | −1.81 | 527 | 0.70 | −1.79 | −3.72 | 0.14 | −0.16 | −0.08 |
Yes | No | |||
---|---|---|---|---|
M | SD | M | SD | |
recycling | 42.23 | 10.35 | 39.62 | 12.16 |
environmental activism | 42.36 | 10.40 | 38.69 | 12.13 |
construction/renovation | 41.76 | 11.86 | 41.42 | 10.39 |
95% Confidence Interval of the Difference | ||||||||
---|---|---|---|---|---|---|---|---|
t | df | p | Mean Difference | Lower | Upper | Cohen’s d | r | |
recycling | 2.26 | 215.69 | 0.03 | 2.61 | 0.34 | 4.88 | 0.23 | 0.12 |
activism | 2.98 | 169.47 | 0.00 | 3.66 | 1.24 | 6.09 | 0.32 | 0.16 |
construction | 0.33 | 328.33 | 0.74 | 0.34 | −1.71 | 2.39 | 0.03 | 0.02 |
Model | Sample | R2 | F | df1 | df2 | p |
---|---|---|---|---|---|---|
1 | general population | 0.374 | 270.365 | 10 | 458 | <0.001 |
2 | construction engineers | 0.953 | 420.700 | 10 | 21 | <0.001 |
3 | architects | 0.715 | 40.264 | 10 | 17 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škondrić, M.; Radević, A.; Savić, A.; Naunović, Z.; Radovanović, Ž.; Svetozarević, S.; Rajaković-Ognjanović, V. Sustainable Lightweight Concrete Designed with Modified Solidified Wastewater Sludge as Partial Replacement of Cement. Sustainability 2025, 17, 945. https://doi.org/10.3390/su17030945
Škondrić M, Radević A, Savić A, Naunović Z, Radovanović Ž, Svetozarević S, Rajaković-Ognjanović V. Sustainable Lightweight Concrete Designed with Modified Solidified Wastewater Sludge as Partial Replacement of Cement. Sustainability. 2025; 17(3):945. https://doi.org/10.3390/su17030945
Chicago/Turabian StyleŠkondrić, Marina, Aleksandar Radević, Aleksandar Savić, Zorana Naunović, Željko Radovanović, Snežana Svetozarević, and Vladana Rajaković-Ognjanović. 2025. "Sustainable Lightweight Concrete Designed with Modified Solidified Wastewater Sludge as Partial Replacement of Cement" Sustainability 17, no. 3: 945. https://doi.org/10.3390/su17030945
APA StyleŠkondrić, M., Radević, A., Savić, A., Naunović, Z., Radovanović, Ž., Svetozarević, S., & Rajaković-Ognjanović, V. (2025). Sustainable Lightweight Concrete Designed with Modified Solidified Wastewater Sludge as Partial Replacement of Cement. Sustainability, 17(3), 945. https://doi.org/10.3390/su17030945