Mechanism of Crack Development and Strength Deterioration in Controlled Low-Strength Material in Dry Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Specimen Preparation
2.3. Experimental Device and Method
2.4. Crack Image Processing
3. Experimental Results
3.1. Water Evaporation Law of Specimens
3.2. Crack Development Process in CLSM
3.3. Influence of OPC and Bentonite Dosages on Crack Morphology
3.4. Variation in Strength After Drying
4. Discussion
4.1. Mechanism of CLSM Microstructure
4.2. Microscopic Deterioration Mechanism of CLSM
5. Conclusions
- (1)
- In dry conditions, the surface of the CLSM exhibited varying degrees of cracking, leading to the degradation of the soil strength. Appropriately increasing the cement content and incorporating bentonite could enhance both the strength and durability of the CLSM, resulting in a significant improvement in its performance.
- (2)
- The hydration products of OPC were the primary source of strength in the CLSM. The optimal content of OPC was found to be 15%, at which point the specimen incorporating bentonite did not exhibit any significant surface cracks at the end of the experiment.
- (3)
- Bentonite primarily enhanced the microstructure of the CLSM through its expansion and filling effects, resulting in the increased integrity of the specimens and improved crack resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duan, H.; Wang, J.; Huang, Q. Encouraging the environmentally sound management of C&D waste in China: An integrative review and research agenda. Renew. Sustain. Energy Rev. 2015, 43, 611–620. [Google Scholar]
- Duan, H.; Miller, T.R.; Liu, G.; Tam, V.W. Construction debris becomes growing concern of growing cities. Waste Manag. 2019, 83, 1–5. [Google Scholar] [CrossRef]
- Qin, X.Q.; Huang, Y.J.; Wang, C.S.; Jiang, K.B.; Xie, L.F.; Liu, R.; Shi, X.G.; Chen, X.S.; Zhang, B.C. A temporary soil dump settlement and landslide risk analysis using the improved small baseline subset-InSAR and continuous medium model. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103760. [Google Scholar] [CrossRef]
- Yin, Y.; Li, B.; Wang, W.; Zhan, L.; Xue, Q.; Gao, Y.; Zhang, N.; Chen, H.; Liu, T.; Li, A. Mechanism of the December 2015 catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization. Engineering 2016, 2, 230–249. [Google Scholar] [CrossRef]
- Priyadharshini, P.; Ramamurthy, K.; Robinson, R.G. Reuse potential of stabilized excavation soil as fine aggregate in cement mortar. Constr. Build. Mater. 2018, 192, 141–152. [Google Scholar] [CrossRef]
- Adomako, S.; Engelsen, C.J.; Døssland, L.T.; Danner, T.; Thorstensen, R.T. Technical and environmental properties of recycled aggregates produced from concrete sludge and excavation materials. Case Stud. Constr. Mater. 2023, 19, e02498. [Google Scholar] [CrossRef]
- Jiao, C.; Diao, Y.; Zheng, G.; Liu, Y.; Huang, J.; Zhang, Y.; Zhao, L. Reuse of Drilling Waste Slurry as the Grouting Material for the Real-Time Capsule Grouting Technique. Materials 2023, 16, 1540. [Google Scholar] [CrossRef]
- Pereira, V.M.; Baldusco, R.; Nobre, T.; Quarcioni, V.A.; Coelho, A.C.; Angulo, S.C. High activity pozzolan obtained from selection of excavation soils in a Construction and Demolition Waste Landfill. J. Build. Eng. 2024, 84, 108494. [Google Scholar] [CrossRef]
- Jiang, Y.; Dai, H.; Fisonga, M.; Li, C.; Hong, Z.S.; Xia, C.; Deng, Y.F. Feasibility and mechanism of high alumina cement-modified chlorine saline soil as subgrade material. Constr. Build. Mater. 2024, 429, 136411. [Google Scholar] [CrossRef]
- Mola Abasi, H.; Shooshpasha, I. Influence of zeolite and cement additions on mechanical behavior of sandy soil. J. Rock Mech. Geotech. Eng. 2016, 8, 746–752. [Google Scholar] [CrossRef]
- Furlan, A.P.; Razakamanantsoa, A.; Ranaivomanana, H.; Amiri, O.; Levacher, D.; Deneele, D. Effect of fly ash on microstructural and resistance characteristics of dredged sediment stabilized with lime and cement. Constr. Build. Mater. 2021, 272, 121637. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, J.; Wang, Y.; Yi, N.; Cui, C. Strength performance and microstructure of calcium sulfoaluminate cement-stabilized soft soil. Sustainability 2021, 13, 2295. [Google Scholar] [CrossRef]
- Liu, S.; Zhan, J.; Wang, X. Influence of composition of curing agent and sand ratio of engineering excavated soil on mechanical properties of fluidized solidified soil. Mater. Sci.-Pol. 2023, 41, 57–67. [Google Scholar] [CrossRef]
- Qian, J.S.; Hu, Y.Y.; Zhang, J.K.; Xiao, W.X.; Ling, J.M. Evaluation the performance of controlled low strength material made of excess excavated soil. J. Clean. Prod. 2019, 214, 79–88. [Google Scholar] [CrossRef]
- Gao, Q.F.; Yu, H.; Zeng, L.; Zhang, R.; Zhang, Y.H. Roles of vetiver roots in desiccation cracking and tensile strengths of near-surface lateritic soil. CATENA 2023, 226, 107068. [Google Scholar] [CrossRef]
- Tang, C.S.; Cheng, Q.; Leng, T.; Shi, B.; Zeng, H.; Inyang, H.I. Effects of wetting-drying cycles and desiccation cracks on mechanical behavior of an unsaturated soil. CATENA 2020, 194, 104721. [Google Scholar] [CrossRef]
- Cheng, Q.; Tang, C.S.; Xu, D.; Zeng, H.; Shi, B. Water infiltration in a cracked soil considering effect of drying-wetting cycles. J. Hydrol. 2021, 593, 125640. [Google Scholar] [CrossRef]
- Zhao, B.; Santamarina, J.C. Desiccation crack formation beneath the surface. Géotechnique 2020, 70, 181–186. [Google Scholar] [CrossRef]
- Julina, M.; Thyagaraj, T. Combined effects of wet-dry cycles and interacting fluid on desiccation cracks and hydraulic conductivity of compacted clay. Eng. Geol. 2020, 267, 105505. [Google Scholar] [CrossRef]
- Rayhani, M.H.; Yanful, E.K.; Fakher, A. Desiccation-induced cracking and its effect on the hydraulic conductivity of clayey soils from Iran. Can. Geotech. J. 2007, 44, 276–283. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, R.; Qian, J.Y.; Zhang, J.M.; Qian, J.G. Effect study of cracks on behavior of soil slope under rainfall conditions. Soils Found. 2012, 52, 634–643. [Google Scholar] [CrossRef]
- Xue, Q.; Larose, E.; Moreau, L.; Thery, R.; Abraham, O.; Henault, J.M. Ultrasonic monitoring of stress and cracks of the 1/3 scale mock-up of nuclear reactor concrete containment structure. Struct. Health Monit. 2022, 21, 1474–1482. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, X.; Sheng, Q.; Du, Y.; Zhou, Y.; Huang, J. Stability of cracking deposit slope considering parameter deterioration subjected to rainfall. Int. J. Geomech. 2021, 21, 05021001. [Google Scholar] [CrossRef]
- Pellegrini, S.; García, G.; Peñas-Castejon, J.M.; Vignozzi, N.; Costantini, E.A. Pedogenesis in mine tails affects macroporosity, hydrological properties, and pollutant flow. CATENA 2016, 136, 3–16. [Google Scholar] [CrossRef]
- Tang, C.S.; Cui, Y.J.; Tang, A.M.; Shi, B. Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils. Eng. Geol. 2010, 114, 261–266. [Google Scholar] [CrossRef]
- Tang, C.S.; Cui, Y.J.; Shi, B.; Tang, A.M.; Liu, C. Desiccation and cracking behaviour of clay layer from slurry state under wetting–drying cycles. Geoderma 2011, 166, 111–118. [Google Scholar] [CrossRef]
- Zeng, H.; Tang, C.S.; Zhu, C.; Vahedifard, F.; Cheng, Q.; Shi, B. Desiccation cracking of soil subjected to different environmental relative humidity conditions. Eng. Geol. 2022, 297, 106536. [Google Scholar] [CrossRef]
- Kumar, H.; Huang, S.; Mei, G.; Garg, A. Influence of feedstock type and particle size on efficiency of biochar in improving tensile crack resistance and shear strength in lean clayey soil. Int. J. Damage Mech. 2021, 30, 646–661. [Google Scholar] [CrossRef]
- Lakshmikantha, M.R.; Prat, P.C.; Ledesma, A. Experimental evidence of size effect in soil cracking. Can. Geotech. J. 2012, 49, 264–284. [Google Scholar] [CrossRef]
- Kishné, A.S.; Morgan, C.L.; Ge, Y.; Miller, W.L. Antecedent soil moisture affecting surface cracking of a Vertisol in field conditions. Geoderma 2010, 157, 109–117. [Google Scholar] [CrossRef]
- Zeng, H.; Tang, C.S.; Cheng, Q.; Inyang, H.I.; Rong, D.Z.; Lin, L.; Shi, B. Coupling effects of interfacial friction and layer thickness on soil desiccation cracking behavior. Eng. Geol. 2019, 260, 105220. [Google Scholar] [CrossRef]
- Zeng, H.; Tang, C.S.; Cheng, Q.; Zhu, C.; Yin, L.Y.; Shi, B. Drought-induced soil desiccation cracking behavior with consideration of basal friction and layer thickness. Water Resour. Res. 2020, 56, e2019WR026948. [Google Scholar] [CrossRef]
- Sánchez, M.; Manzoli, O.L.; Guimarães, L.J. Modeling 3-D desiccation soil crack networks using a mesh fragmentation technique. Comput. Geotech. 2014, 62, 27–39. [Google Scholar] [CrossRef]
- Chertkov, V.Y. Shrinkage anisotropy characteristics from soil structure and initial sample/layer size. Geoderma 2013, 200–201, 1–8. [Google Scholar] [CrossRef]
- Tang, C.; Shi, B.; Liu, C.; Zhao, L.; Wang, B. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils. Eng. Geol. 2008, 101, 204–217. [Google Scholar] [CrossRef]
- Gui, Y.L.; Zhao, Z.Y.; Kodikara, J.; Bui, H.H.; Yang, S.Q. Numerical modelling of laboratory soil desiccation cracking using UDEC with a mix-mode cohesive fracture model. Eng. Geol. 2016, 202, 14–23. [Google Scholar] [CrossRef]
- Li, J.H.; Li, L.; Chen, R.; Li, D.Q. Cracking and vertical preferential flow through landfill clay liners. Eng. Geol. 2016, 206, 33–41. [Google Scholar] [CrossRef]
- Yuan, S.; Yang, B.; Liu, J.; Cao, B. Influence of fibers on desiccation cracks in sodic soil. Bull. Eng. Geol. Environ. 2021, 80, 3207–3216. [Google Scholar] [CrossRef]
- Cheng, Q.; Tang, C.S.; Zhu, C.; Li, K.; Shi, B. Drying-induced soil shrinkage and desiccation cracking monitoring with distributed optical fiber sensing technique. Bull. Eng. Geol. Environ. 2020, 79, 3959–3970. [Google Scholar] [CrossRef]
- Zhang, H.H.; Liu, Z.B.; Ma, X.F.; Zhang, H.J.; Qian, J.G. Monitoring of early curing stage of cemented soil using polymer optical fiber sensors and microscopic observation. Constr. Build. Mater. 2024, 436, 136888. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Rachan, R.; Chinkulkijniwat, A.; Raksachon, Y.; Suddeepong, A. Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Constr. Build. Mater. 2010, 24, 2011–2021. [Google Scholar] [CrossRef]
- Ata, A.A.; Salem, T.N.; Elkhawas, N.M. Properties of soil–bentonite–cement bypass mixture for cutoff walls. Constr. Build. Mater. 2015, 93, 950–956. [Google Scholar] [CrossRef]
- He, K.; Deng, Y.E.; Cao, Z.Q.; Zhang, X.F. Engineering performance and microscale structure of activated high titanium slag-soil-cement-bentonite (HTS-SCB) slurry backfill. Constr. Build. Mater. 2023, 373, 130776. [Google Scholar] [CrossRef]
- GB/T 50123-2019; Standard for Geotechnical Testing Method. China Planning Press: Beijing, China, 2019.
- Zeng, H.; Tang, C.S.; Fraccica, A.; Zhu, C.; Tian, B.G.; Shi, B. Multi-scale investigation on dynamic characteristics of clayey soil evaporation and cracking. Comput. Geotech. 2024, 171, 106312. [Google Scholar] [CrossRef]
- Jennings, H.M. A model for the microstructure of calcium silicate hydrate in cement paste. Cem. Concr. Res. 2000, 30, 101–116. [Google Scholar] [CrossRef]
- Pellenq, R.M.; Lequeux, N.; Van Damme, H. Engineering the bonding scheme in C–S–H: The iono-covalent framework. Cem. Concr. Res. 2008, 38, 159–174. [Google Scholar] [CrossRef]
- Bee, S.L.; Abdullah, M.A.; Bee, S.T.; Sin, L.T.; Rahmat, A.R. Polymer nanocomposites based on silylated-montmorillonite: A review. Prog. Polym. Sci. 2018, 85, 57–82. [Google Scholar] [CrossRef]
- Liu, C.L.; Tang, C.S.; Li, H.D.; Sun, K.Q.; Shi, B. Experimental study on effect of interfacial roughness on desiccation cracking behavior of soil. J. Eng. Geol. 2017, 25, 1314–1321. [Google Scholar]
- Huang, K.; Fang, Z.; Cai, G.; Shi, X.; Huang, K.; He, Y.; Duan, W.; Tian, N. Macro and microscopic characteristics of soft soil stabilized by Portland cement-soda residue under dry-wet cycling. Constr. Build. Mater. 2024, 428, 136347. [Google Scholar] [CrossRef]
- Hargis, C.W.; Kirchheim, A.P.; Monteiro, P.J.; Gartner, E.M. Early age hydration of calcium sulfoaluminate (synthetic ye’elimite, C4A3S) in the presence of gypsum and varying amounts of calcium hydroxide. Cem. Concr. Res. 2013, 48, 105–115. [Google Scholar] [CrossRef]
Water Content (%) | Liquid Limit (%) | Plastic Limit (%) | Plastic Index (/) | Density (g/cm3) |
---|---|---|---|---|
23.5 | 45.5 | 21.7 | 23.8 | 1.81 |
Material | CaO | SiO2 | Al2O3 | Fe2O3 | SO3 | MgO | f-CaO |
---|---|---|---|---|---|---|---|
Content (%) | 58.9 | 23.96 | 6.34 | 3.46 | 2.14 | 0.97 | 1.6 |
Material | CaO | SiO2 | Al2O3 | Fe2O3 | H2O+ | H2O− | FeO | MgO | K2O | Na2O |
---|---|---|---|---|---|---|---|---|---|---|
Content (%) | 1.32 | 54.1 | 18.4 | 1.6 | 4.58 | 12.61 | 0.34 | 2.57 | 0.45 | 1.86 |
Specimen Number | Cement (%) | Bentonite (%) |
---|---|---|
C1 | 5 | 0 |
C2 | 10 | 0 |
C3 | 15 | 0 |
C4 | 20 | 0 |
BC1 | 5 | 6 |
BC2 | 10 | 6 |
BC3 | 15 | 6 |
BC4 | 20 | 6 |
Sample | C1 | C2 | C3 | C4 | CB1 | CB2 | CB3 | CB4 |
---|---|---|---|---|---|---|---|---|
R2 | 0.998 | 0.997 | 0.997 | 0.998 | 0.998 | 0.988 | 0.993 | 0.997 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, W.; Dai, Z. Mechanism of Crack Development and Strength Deterioration in Controlled Low-Strength Material in Dry Environment. Sustainability 2025, 17, 965. https://doi.org/10.3390/su17030965
Peng W, Dai Z. Mechanism of Crack Development and Strength Deterioration in Controlled Low-Strength Material in Dry Environment. Sustainability. 2025; 17(3):965. https://doi.org/10.3390/su17030965
Chicago/Turabian StylePeng, Wei, and Zili Dai. 2025. "Mechanism of Crack Development and Strength Deterioration in Controlled Low-Strength Material in Dry Environment" Sustainability 17, no. 3: 965. https://doi.org/10.3390/su17030965
APA StylePeng, W., & Dai, Z. (2025). Mechanism of Crack Development and Strength Deterioration in Controlled Low-Strength Material in Dry Environment. Sustainability, 17(3), 965. https://doi.org/10.3390/su17030965