Characterization of the Municipal Plastic and Multilayer Packaging Waste in Three Cities of the Baltic States
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Plastic and Multilayer Packaging Waste Characterization in the Mixed Municipal Solid Waste Stream
2.3. Plastic and Multilayer Packaging Waste Characterization in the Separately Collected Municipal Solid Waste Stream
2.4. Calculation Procedure
- Z—the score corresponding to the desired confidence level (95% confidence);
- —the estimated proportion of plastic waste in the total waste stream;
- —the margin of error or acceptable level of precision (±5%).
3. Results
3.1. Plastic and Multilayer Packaging in the Mixed Municipal Solid Waste Streams
3.2. Separately Collected Plastic and Multilayer Packaging Waste
3.2.1. Separately Collected Plastic and Multilayer Packaging Waste from Multi-Family and Single-Family Households in Kaunas
3.2.2. Separately Collected Plastic and Multilayer Packaging Waste from Single-Family and Multi-Family Households in Tallinn
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MBT | Mechanical biological treatment |
MSW | Municipal solid waste |
HDPE | High-density polyethylene |
LDPE | Low-density polyethylene |
PP | Polypropylene |
PS | Polystyrene |
PA | Polyamide |
PET | Polyethylene terephthalate |
PLA | Polylactic acid |
ABS | Acrylonitrile butadiene styrene |
PVDF | Polyvinylidene fluoride or polyvinylidene difluoride |
References
- Pow, C.J.; Fellows, R.; White, H.L.; Woodford, L.; Quilliam, R.S. Fluvial flooding and plastic pollution—The delivery of potential human pathogenic bacteria into agricultural fields. Environ. Pollut. 2025, 366, 125518. [Google Scholar] [CrossRef] [PubMed]
- Lyshtva, P.; Voronova, V.; Barbir, J.; Filho, W.L.; Kröger, S.D.; Witt, G.; Miksch, L.; Saborowski, R.; Gutow, L.; Frank, C.; et al. Degradation of a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) compound in different environments. Heliyon 2024, 10, e24770. [Google Scholar] [CrossRef] [PubMed]
- Altman, R. The myth of historical bio-based plastics Early bio-based plastics, which were neither clean nor green, offer lessons for today. Science 2021, 373, 47–49. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.D.; Hasselbalch, J.; Holmberg, K.; Stripple, J. Politics and the plastic crisis: A review throughout the plastic life cycle. Wiley Interdiscip. Rev. Energy Environ. 2020, 9, e360. [Google Scholar] [CrossRef]
- Bank, M.S. (Ed.) Microplastic in the Environment: Pattern and Process; Environmental Contamination Remediation and Management; Springer: Cham, Switzerland, 2022; Available online: https://link.springer.com/book/10.1007/978-3-030-78627-4 (accessed on 17 January 2025).
- Kulkarni, A.; Quintens, G.; Pitet, L.M. Trends in Polyester Upcycling for Diversifying a Problematic Waste Stream. Macromolecules 2023, 56, 1747–1758. [Google Scholar] [CrossRef]
- Torkelis, A.; Dvarionienė, J.; Denafas, G. The Factors Influencing the Recycling of Plastic and Composite Packaging Waste. Sustainability 2024, 16, 9515. [Google Scholar] [CrossRef]
- Blagoeva, N.; Georgieva, V.; Dimova, D. Relationship between GDP and Municipal Waste: Regional Disparities and Implication for Waste Management Policies. Sustainability 2023, 15, 15193. [Google Scholar] [CrossRef]
- European Parliament and Council. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Available online: https://eur-lex.europa.eu/eli/dir/2008/98/oj/eng (accessed on 17 January 2025).
- European Parliament and Council. Directive 94/62/EC of 20 December 1994 on Packaging and Packaging Waste. Available online: http://data.europa.eu/eli/dir/1994/62/2018-07-04/eng (accessed on 17 January 2025).
- European Parliament and Council. Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Available online: http://data.europa.eu/eli/dir/1999/31/2024-08-04/eng (accessed on 17 January 2025).
- Kroell, N.; Chen, X.; Küppers, B.; Schlögl, S.; Feil, A.; Greiff, K. Near-infrared-based quality control of plastic pre-concentrates in lightweight-packaging waste sorting plants. Resour. Conserv. Recycl. 2024, 201, 107256. [Google Scholar] [CrossRef]
- Bollmann, U.E.; Simon, M.; Vollertsen, J.; Bester, K. Assessment of input of organic micropollutants and microplastics into the Baltic Sea by urban waters. Mar. Pollut. Bull. 2019, 148, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Schernewski, G.; Radtke, H.; Robbe, E.; Haseler, M.; Hauk, R.; Meyer, L.; Piehl, S.; Riedel, J.; Labrenz, M. Emission, Transport, and Deposition of visible Plastics in an Estuary and the Baltic Sea—A Monitoring and Modeling Approach. Environ. Manag. 2021, 68, 860–881. [Google Scholar] [CrossRef]
- Filho, W.L.; Voronova, V.; Barbir, J.; Moora, H.; Kloga, M.; Kliučininkas, L.; Klavins, M.; Tirca, D.-M. An assessment of the scope and effectiveness of soft measures to handle plastic pollution in the Baltic Sea Region. Mar. Pollut. Bull. 2024, 209 Pt A, 117090. [Google Scholar] [CrossRef]
- Sobrino-Monteliu, M.; Navarro, A.; Rodríguez, B.; Tejera, G.; Herrera, A.; Rodríguez, A. Seabird biomonitoring indicates similar plastic pollution throughout the Canary Current. Mar. Pollut. Bull. 2025, 211, 117424. [Google Scholar] [CrossRef] [PubMed]
- Stasiškienė, Ž.; Barbir, J.; Draudvilienė, L.; Chong, Z.K.; Kuchta, K.; Voronova, V.; Filho, W.L. Challenges and Strategies for Bio-Based and Biodegradable Plastic Waste Management in Europe. Sustainability 2022, 14, 16476. [Google Scholar] [CrossRef]
- Biakhmetov, B.; Li, Y.; Zhao, Q.; Dostiyarov, A.; Flynn, D.; You, S. Transportation and process modelling-assisted techno-economic assessment of resource recovery from non-recycled municipal plastic waste. Energy Convers. Manag. 2025, 324, 119273. [Google Scholar] [CrossRef]
- European Environment Agency. Germany. Available online: https://www.eea.europa.eu/publications/many-eu-member-states/germany (accessed on 17 January 2025).
- European Environment Agency. Latvia. Available online: https://www.eea.europa.eu/publications/many-eu-member-states/latvia (accessed on 17 January 2025).
- Shen, M.; Huang, W.; Chen, M.; Song, B.; Zeng, G.; Zhang, Y. (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. J. Clean. Prod. 2020, 254, 120138. [Google Scholar] [CrossRef]
- Badejo, O.; Hernández, B.; Vlachos, D.G.; Ierapetritou, M.G. Design of sustainable supply chains for managing plastic waste: The case of low density polyethylene. Sustain. Prod. Consum. 2024, 47, 460–473. [Google Scholar] [CrossRef]
- Plastics Europe. Circular Economy Report: Full Report. 2024. Available online: https://plasticseurope.org/wp-content/uploads/2024/03/CEreport_fullreport_2024_light-1.pdf (accessed on 17 January 2025).
- European Environment Agency (EEA). Many EU Member States Not on Track to Meet Recycling Targets for Municipal Waste and Packaging Waste. Available online: https://www.eea.europa.eu/publications/many-eu-member-states (accessed on 17 January 2025).
- Van Fan, Y.; Jiang, P.; Tan, R.R.; Aviso, K.B.; You, F.; Zhao, X.; Lee, C.T.; Klemeš, J.J. Forecasting plastic waste generation and interventions for environmental hazard mitigation. J. Hazard. Mater. 2022, 424 Pt A, 127330. [Google Scholar] [CrossRef]
- Lyshtva, P.; Voronova, V.; Kuusik, A.; Kobets, Y. Title Assessing the Biodegradation of Poly(butylene succinate) and Poly(lactic acid) Blends Under Controlled Composting Conditions Using the Titration Method. Available online: https://ssrn.com/abstract=5031775 (accessed on 17 January 2025).
- Biswas, P.P.; Chen, W.-H.; Lam, S.S.; Lim, S.; Chang, J.-S. Comparative analysis of selected plastic pyrolysis and catalytic versus non-catalytic pyrolysis of polyethylene using artificial neural networks for oil production. Sci. Total Environ. 2025, 958, 177866. [Google Scholar] [CrossRef] [PubMed]
- Meng, M.; Yang, L.; Wei, B.; Cao, Z.; Yu, J.; Liao, X. Plastic shed production systems: The migration of heavy metals from soil to vegetables and human health risk assessment. Ecotoxicol. Environ. Saf. 2021, 215, 112106. [Google Scholar] [CrossRef]
- Kladnik, V.; Dworak, S.; Schwarzböck, T. Composition of public waste—A case study from Austria. Waste Manag. 2024, 178, 210–220. [Google Scholar] [CrossRef]
- Gritsch, L.; Breslmayer, G.; Rainer, R.; Stipanovic, H.; Tischberger-Aldrian, A.; Lederer, J. Critical properties of plastic packaging waste for recycling: A case study on non-beverage plastic bottles in an urban MSW system in Austria. Waste Manag. 2024, 185, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Jędrczak, A.; Połomka, J.; Dronia, W. Seasonal variability of the quantity and morphological composition of generated waste and selectively collected waste. Waste Manag. Res. 2023, 41, 1349–1359. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Zhao, Z.; Yang, G.; Ma, S.; Zhou, C. Estimating the quantities and compositions of household plastic packaging waste in China by integrating large-sample questionnaires and lab-test methods. Resour. Conserv. Recycl. 2023, 198, 107192. [Google Scholar] [CrossRef]
- Dahlbo, H.; Poliakova, V.; Mylläri, V.; Sahimaa, O.; Anderson, R. Recycling potential of post-consumer plastic packaging waste in Finland. Waste Manag. 2018, 71, 52–61. [Google Scholar] [CrossRef]
- Denafas, G.; Ruzgas, T.; Martuzevičius, D.; Shmarin, S.; Hoffmann, M.; Mykhaylenko, V.; Ogorodnik, S.; Romanov, M.; Neguliaeva, E.; Chusov, A.; et al. Seasonal variation of municipal solid waste generation and composition in four East European cities. Resour. Conserv. Recycl. 2014, 89, 22–30. [Google Scholar] [CrossRef]
- Edjabou, M.E.; Boldrin, A.; Astrup, T.F. Compositional analysis of seasonal variation in Danish residual household waste. Resour. Conserv. Recycl. 2018, 130, 70–79. [Google Scholar] [CrossRef]
- Saleem, J.; Tahir, F.; Baig, M.Z.K.; Al-Ansari, T.; McKay, G. Assessing the environmental footprint of recycled plastic pellets: A life-cycle assessment perspective. Environ. Technol. Innov. 2023, 32, 103289. [Google Scholar] [CrossRef]
- Zaman, A.U. A comprehensive study of the environmental and economic benefits of resource recovery from global waste management systems. J. Clean. Prod. 2016, 124, 41–50. [Google Scholar] [CrossRef]
- Rahimi, A.; García, J.M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046. [Google Scholar] [CrossRef]
- PreZero. Available online: https://prezero-international.com/en/press/2022/prezero-starts-up-europe-s-newest-sorting-plant-for-lightweight-packaging (accessed on 17 January 2025).
- SiteZero. Available online: https://www.svenskplastatervinning.se/en/site-zero/ (accessed on 17 January 2025).
- World Bank Group. International Development, Poverty, & Sustainability. World Bank. Available online: https://www.worldbank.org/en/home (accessed on 17 January 2025).
- Home—Eurostat. Available online: https://ec.europa.eu/eurostat (accessed on 17 January 2025).
- Seyring, N.; Dollhofer, M.; Weißenbacher, J.; Bakas, I.; McKinnon, D. Assessment of collection schemes for packaging and other recyclable waste in European Union-28 Member States and capital cities. Waste Manag. Res. J. A Sustain. Circ. Econ. 2016, 34, 947–956. [Google Scholar] [CrossRef]
- Winterstetter, A.; Veiga, J.M.; Sholokhova, A.; Šubelj, G. Country-specific assessment of mismanaged plastic packaging waste as a main contributor to marine litter in Europe. Front. Sustain. 2022, 3, 1039149. [Google Scholar] [CrossRef]
- Rubčinskaitė, R.; Urbšienė, L. What matters for the economic synchronization of the Baltic States. Empirica 2024, 51, 645–678. [Google Scholar] [CrossRef]
- Aplinkos Apsaugos Agentūra. Suvestinė Pagal Atliekų Kodus. Available online: https://aaa.lrv.lt/lt/veiklos-sritys/atliekos/atlieku-apskaita/atlieku-apskaitos-duomenys/suvestine-pagal-atlieku-kodus/ (accessed on 17 January 2025).
- Ģeoloģijas un Meteoroloģijas Centrs Latvijas Vides. Latvijas Vides, Ģeoloģijas un Meteoroloģijas Centrs. Available online: https://videscentrs.lvgmc.lv (accessed on 17 January 2025).
- Ministry of Climate. Available online: https://kliimaministeerium.ee/en (accessed on 17 January 2025).
- ASTM D5231-92(2016); Standard Test Method for Determination of the Composition of Unprocessed Municipal Solid Waste. ASTM International: West Conshohocken, PA, USA, 2016. Available online: https://www.astm.org/d5231-92r16.html (accessed on 17 January 2025).
- BASF’s trinamiX extends mobile NIR spectroscopy to plastic sorting. Addit. Polym. 2020, 2020, 11–12. [CrossRef]
- Adarsh, U.K.; Kartha, V.B.; Santhosh, C.; Unnikrishnan, V.K. Spectroscopy: A promising tool for plastic waste management. TrAC Trends Anal. Chem. 2022, 149, 116534. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Eo, S.; Shim, W.J. A comparison of spectroscopic analysis methods for microplastics: Manual, semi-automated, and automated Fourier transform infrared and Raman techniques. Mar. Pollut. Bull. 2021, 173 Pt B, 113101. [Google Scholar] [CrossRef]
- Areeprasert, C.; Asingsamanunt, J.; Srisawat, S.; Kaharn, J.; Inseemeesak, B.; Phasee, P.; Khaobang, C.; Siwakosit, W.; Chiemchaisri, C. Municipal Plastic Waste Composition Study at Transfer Station of Bangkok and Possibility of its Energy Recovery by Pyrolysis. Energy Procedia 2017, 107, 222–226. [Google Scholar] [CrossRef]
- Bodzay, B. Polymer Waste: Controlled Breakdown or Recycling? 2017. Available online: http://www.europia.org/ijdst (accessed on 17 January 2025).
- Esguerra, J.L.; Carlsson, A.; Johansson, J.; Anderberg, S. Characterization, recyclability, and significance of plastic packaging in mixed municipal solid waste for achieving recycling targets in a Swedish city. J. Clean. Prod. 2024, 468, 143014. [Google Scholar] [CrossRef]
- Delgado, C.; Barruetabeña, L.; Salas, O.; Wolf, O. Assessment of the Environmental Advantages and Drawbacks of Existing and Emerging Polymers Recovery Processes; Publications Office: Luxembourg, 2007. [Google Scholar]
- Mihai, F.-C. Geography of Waste as a New Approach in Waste Management Study. Pap. Geogr. Semin. Dimitrie Cantemir 2012, 33, 39–46. [Google Scholar] [CrossRef]
- Eriksen, M.K.; Astrup, T.F. Characterisation of source-separated, rigid plastic waste and evaluation of recycling initiatives: Effects of product design and source-separation system. Waste Manag. 2019, 87, 161–172. [Google Scholar] [CrossRef]
- Faraca, G.; Astrup, T. Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Manag. 2019, 95, 388–398. [Google Scholar] [CrossRef]
- Tretsiakova-McNally, S.; Lubarsky, H.; Vennard, A.; Cairns, P.; Farrell, C.; Joseph, P.; Arun, M.; Harvey, I.; Harrison, J.; Nadjai, A. Separation and Characterization of Plastic Waste Packaging Contaminated with Food Residues. Polymers 2023, 15, 2943. [Google Scholar] [CrossRef] [PubMed]
Country of Study | Year of Study | Main Outcome | Ref. |
---|---|---|---|
Austria | 2024 | This study provides a general quantitative and qualitative analysis of municipal waste in Austria, assessing the quantities of waste generated and its distribution across different waste types (e.g., packaging waste, WEEE, glass, etc.). | [29] |
Austria | 2024 | This study provided an in-depth characterization of non-beverage plastic bottles, including all packaging subcomponents, in mixed MSW as well as separate post-consumer plastic packaging waste collection, including the polymer, product category, decoration technology, filling volume, color and more, to assess the quality of this waste stream and the potential for recovery and recycling. | [30] |
Poland | 2023 | Waste streams were analyzed to investigate the impact of seasonal fluctuations on the quantity and composition of generated municipal waste and separately collected waste. | [31] |
China | 2023 | The study applied a theoretical–practical model to determine the distribution of plastic packaging waste by packaging type and other factors. | [32] |
Finland | 2017 | The sorting study identified the composition of the plastic fraction of MSW by the main polymer types (LDPE, HDPE, PET, etc.). Accordingly, the recycling potential of these plastics has been assessed. | [33] |
Lithuania, Russia, Ukraine and Georgia | 2014 | This study investigates the impact of seasonal variations on the quality and composition of MSW in four Eastern European cities, providing insights from research conducted between 2009 and 2011. | [34] |
Method | Purpose | Strengths | Limitations |
---|---|---|---|
Near-infrared spectroscopy (NIR) | For identifying plastics by polymer type and sorting them in waste recycling systems | Rapid, non-destructive and ideal for sorting | Less detailed, limited material types and difficult to apply on dark-colored samples |
Fourier-transform infrared spectroscopy (FTIR) | For polymer identification and functional group analysis | Accurate, provides detailed molecular information and suitable for microplastic analysis | Requires sample preparation, is slower and is difficult to apply on dark-colored samples |
Raman | For detailed chemical composition and impurity detection | Non-destructive, analyzes small and complex samples and is suitable for microplastic analysis | Lower signal intensity, relatively slow method and sensitive to environmental components |
Laser-induced breakdown spectroscopy (LIBS) | For elemental composition of plastic materials | Rapid and non-destructive and can be performed in situ (i.e., without removing the material from its environment); it can simultaneously detect multiple elements in a single measurement | The composition of the material may affect the accuracy of the measurements, especially for complex or heterogeneous samples |
Type of Polymer and Categories of Plastic and Multilayer Packaging | Kaunas (LT) | Daugavpils (LV) | Tallinn (EE) | |||
---|---|---|---|---|---|---|
In the Total Sample Mass, % | In the Category ‘Plastics and Multilayer Packaging’, % | In the Total Sample Mass, % | In the Category ‘Plastics and Multilayer Packaging’, % | In the Total Sample Mass, % | In the Category ‘Plastics and Multilayer Packaging’, % | |
HDPE jars | 0.51 | 1.32 | 5.63 | 15.24 | 0.87 | 2.00 |
LDPE film | 20.88 | 53.86 | 14.19 | 38.53 | 7.24 | 17.88 |
PP jars, rigid packaging | 5.98 | 11.97 | 2.96 | 8.04 | 6.14 | 15.16 |
PP film | 6.33 | 16.20 | 2.46 | 6.68 | 2.37 | 5.87 |
PET bottles, rigid packaging | 1.74 | 4.48 | 0.88 | 2.40 | 2.26 | 5.58 |
PS foam | 0.93 | 2.50 | 1.51 | 4.11 | 0.35 | 0.86 |
PS jars, rigid packaging | 0.14 | 0.36 | - | - | 6.54 | 16.16 |
Other plastics * | 1.25 | 3.22 | 2.46 | 6.68 | 6.49 | 16.02 |
Multilayer packaging tetra packs, blisters | 2.40 | 6.09 | 6.74 | 18.32 | 2.83 | 7.01 |
Total, % | 40.16 | 36.83 | 35.09 |
KAUNAS, Multi-Family Households | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Packaging Categories | Polymer Type | Multi- Layer Packaging | Not Identified | Mass by Packaging Type | |||||||
HDPE | LDPE | PP | PVC | PS | PET | PA | PVDF | ||||
kg | kg | kg | kg | kg | kg | kg | kg | kg | kg | kg | |
Jars | |||||||||||
Bottles | 1.04 | 1.21 | 0.78 | 3.39 | 1.30 | 0.78 | 8.50 | ||||
Rigid packaging | 1.21 | 0.95 | 0.87 | 1.04 | 1.30 | 1.13 | 6.50 | ||||
Foam | 1.91 | 1.91 | |||||||||
Films | 0.69 | 6.87 | 0.69 | 0.78 | 2.78 | 0.95 | 3.30 | 16.06 | |||
Combined packaging | 4.26 | 4.26 | |||||||||
Mass by polymer type, kg | 2.94 | 9.03 | 2.34 | 0.78 | 2.95 | 7.47 | 0.95 | 2.43 | 4.26 | 4.08 | 37.23 |
KAUNAS, Single-Family Households | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Packaging Categories | Polymer Type | Multilayer Packaging | Not Identified | Mass by Packaging Type | ||||||
HDPE | LDPE | PP | PVC | PS | PET | PLA | ||||
kg | kg | kg | kg | kg | kg | kg | kg | kg | kg | |
Jars | 2.81 | 0.70 | 0.79 | 4.3 | ||||||
Bottles | 3.43 | 5.45 | 8.88 | |||||||
Rigid packaging | 7.21 | 1.14 | 3.28 | 0.93 | 2.37 | 0.88 | 15.81 | |||
Foam | 0.97 | 0.97 | ||||||||
Films | 0.96 | 3.60 | 0.88 | 0.96 | 0.61 | 1.05 | 0.7 | 8.76 | ||
Combined packaging | 2.11 | 2.11 | ||||||||
Mass by polymer type, kg | 11.60 | 4.74 | 6.97 | 0.96 | 1.90 | 9.13 | 1.05 | 2.11 | 2.37 | 40.83 |
TALLINN, Multi-Family Households | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Packaging Categories | Polymer Type | Multi- Layer Packaging | Not Identified | Mass by Packaging Type | ||||||
HDPE | LDPE | PP | PVC | PS | PET | PA | ||||
kg | kg | kg | kg | kg | kg | kg | kg | kg | kg | |
Jars | 0.65 | 0.01 | 0.88 | 0.10 | 0.12 | 0.10 | 1.86 | |||
Bottles | 0.42 | 0.38 | 0.60 | 1.40 | ||||||
Rigid packaging | 1.96 | 0.08 | 2.17 | 0.10 | 0.20 | 2.65 | 0.08 | 0.15 | 7.39 | |
Foam | 0.10 | 0.10 | ||||||||
Films | 0.83 | 5.77 | 0.87 | 0.02 | 1.33 | 8.82 | ||||
Combined packaging | 16.17 | 16.17 | ||||||||
Mass by polymer type, kg | 3.86 | 5.86 | 4.30 | 0.10 | 0.40 | 3.25 | 0.22 | 16.17 | 1.58 | 35.74 |
TALLINN, Single-Family Households | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Packaging Categories | Polymer Type | Multilayer Packaging | Not Identified | Mass by Packaging Type | ||||||||
HDPE | LDPE | PP | PVC | PS | PET | PA | ABS | PVDF | ||||
kg | kg | kg | kg | kg | kg | kg | kg | kg | kg | kg | kg | |
Jars | 0.47 | 0.19 | 0.48 | 1.14 | ||||||||
Bottles | 0.24 | 0.21 | 1.30 | 1.75 | ||||||||
Rigid packaging | 1.57 | 5.07 | 0.28 | 0.26 | 2.99 | 0.08 | 10.25 | |||||
Foam | ||||||||||||
Films | 0.99 | 4.71 | 1.62 | 0.28 | 0.11 | 0.04 | 0.27 | 8.02 | ||||
Combined packaging | 5.37 | 5.37 | ||||||||||
Mass by polymer type. kg | 3.27 | 4.71 | 7.09 | 0.28 | 0.26 | 5.05 | 0.11 | 0.08 | 0.04 | 5.37 | 0.27 | 26.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyshtva, P.; Torkelis, A.; Kobets, Y.; Carpio-Vallejo, E.; Dobri, A.; Barbir, J.; Voronova, V.; Denafas, G.; Kliucininkas, L. Characterization of the Municipal Plastic and Multilayer Packaging Waste in Three Cities of the Baltic States. Sustainability 2025, 17, 986. https://doi.org/10.3390/su17030986
Lyshtva P, Torkelis A, Kobets Y, Carpio-Vallejo E, Dobri A, Barbir J, Voronova V, Denafas G, Kliucininkas L. Characterization of the Municipal Plastic and Multilayer Packaging Waste in Three Cities of the Baltic States. Sustainability. 2025; 17(3):986. https://doi.org/10.3390/su17030986
Chicago/Turabian StyleLyshtva, Pavlo, Artūras Torkelis, Yaroslav Kobets, Estefania Carpio-Vallejo, Andrea Dobri, Jelena Barbir, Viktoria Voronova, Gintaras Denafas, and Linas Kliucininkas. 2025. "Characterization of the Municipal Plastic and Multilayer Packaging Waste in Three Cities of the Baltic States" Sustainability 17, no. 3: 986. https://doi.org/10.3390/su17030986
APA StyleLyshtva, P., Torkelis, A., Kobets, Y., Carpio-Vallejo, E., Dobri, A., Barbir, J., Voronova, V., Denafas, G., & Kliucininkas, L. (2025). Characterization of the Municipal Plastic and Multilayer Packaging Waste in Three Cities of the Baltic States. Sustainability, 17(3), 986. https://doi.org/10.3390/su17030986