The Sustainability of Organic Grain Production on the Canadian Prairies—A Review
Abstract
:1. Introduction
2. Agronomic Aspects of Organic Grain Production on the Canadian Prairies
2.1. Weed Management
2.2. Managing Soil Fertility/Quality
3. Environmental Aspects of Organic Grain Production on the Canadian Prairies
4. Socio-Economic Aspects of Organic Grain Production on the Canadian Prairies
4.1. Factors Influencing Consumer Preference for Organic Products
4.2. Factors Influencing the Economic Sustainability of Organic Producers
5. Conclusions
Acknowledgements
References and Notes
- IFOAM. The IFOAM Basic Norms for Organic Production and Processing Version 2005. Available online: http://www.ifoam.org/about_ifoam/standards/norms/norm_documents_library/Norms_ENG_V4_20090113.pdf (access on 16 January 2010).
- Willer, H. The world of organic agriculture 2009: Summary. In The World of Organic Agriculture: Statistics and Emerging Trends 2009; Willer, H., Klicher, L., Eds.; IFOAM: Bonn, Germany; FiBL: Frick, Switzerland; ITC: Geneva, Switzerland, 2009; pp. 19–24. [Google Scholar]
- Sahota, A. Overview of the Global Market for Organic Food and Drink. In The World of Organic Agriculture: Statistics and Emerging Trends 2004; Willer, H., Yussefi, M., Eds.; International Federation of Organic Agriculture Movements: Bonn, Germany, 2004; pp. 21–26. [Google Scholar]
- Macey, A. Retail Sales of Certified Organic Food Products in Canada in 2006. Available online: http://www.organicagcentre.ca/Docs/RetailSalesOrganic_Canada2006.pdf (access on 30 December 2009).
- Canadian Food Inspection Agency. Organic Products. Available online: http://www.inspection.gc.ca/english/fssa/orgbio/orgbioe.shtml (access on 19 December 2009).
- Kendrick, J. Organic: From Niche to Mainstream (Statistics Canada: Canadian Agriculture at a Glance). Available online: http://www.statcan.gc.ca/bsolc/olc-cel/olc-cel?lang=eng&catno=96-325-X200700010529 (access on 17 January 2010).
- Entz, M.H.; Guilford, R.; Gulden, R. Crop yield and soil nutrient status on 14 organic farms in the eastern portion of the northern Great Plains. Can. J. Plant Sci. 2001, 81, 351–354. [Google Scholar] [CrossRef]
- Nelson, A.; Froese, J.; Beavers, R.L. Lowering Soil Erosion Risk in Organic Cropping Systems. Final Research Report W2006-09. Available online: http://www.organicagcentre.ca/Docs/OACC_bulletins06/OACC_Bulletin9_erosion_risk.pdf (access on 26 February 2010).
- Macrae, R.J.; Frick, B.; Martin, R.C. Economic and social impacts of organic production systems. Can. J. Plant Sci. 2007, 87, 1037–1044. [Google Scholar] [CrossRef]
- Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, energetic, and economic comparisons of organic and conventional farming systems. Bioscience 2005, 55, 573–582. [Google Scholar] [CrossRef]
- Khakbazan, M.; Mohr, R.M.; Derksen, D.A.; Monreal, M.A.; Grant, C.A.; Zentner, R.P.; Moulin, A.P.; McLaren, D.L.; Irvine, R.B.; Nagy, C.N. Effects of alternative management practices on the economics, energy and GHG emissions of a wheat-pea cropping system in the Canadian prairies. Soil Till. Res. 2009, 104, 30–38. [Google Scholar] [CrossRef]
- Pelletier, N.; Arsenault, N.; Tyedmers, P. Scenario Modeling Potential Eco-Efficiency Gains from a Transition to Organic Agriculture: Life Cycle Perspectives on Canadian Canola, Corn, Soy, and Wheat Production. Environ. Manage. 2008, 42, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Agriculture and Agri-Food Canada. Sustainable Agriculture: Our Path Forward. Available online: http://www4.agr.gc.ca/AAFC-AAC/display-afficher.do?id=1175533355176&lang=eng (access on 30 December 2009).
- Rodale Institute. Organic or “Natural”. Available online: http://www.rodaleinstitute.org/organic_or_natural (access on 7 February 2010).
- IFOAM. Principles of Organic Agriculture. Available online: http://www.ifoam.org/about_ifoam/principles/index.html (access on 16 January 2010).
- Sustainable Table. The Issues: Organic. Available online: http://www.sustainabletable.org/issues/organic/ (access on 7 February 2010).
- Statistics Canada. Total Area of Farms, Land Tenure and Land in Crops, by Province. Available online: http://www40.statcan.ca/l01/cst01/agrc25a.htm (access on 26 February 2010).
- Macey, A. Certified Organic Production in Canada. 2004. Available online: http://www.cog.ca/documents/certified_organic_production_2004_report.pdf (access on 26 February 2010).
- Frick, B.; Beavers, R.L.; Hammermeister, A.M.; Thiessen-Martens, J.R. Research Needs Assessment of Saskatchewan Organic Farmers. Available online: http://www.organicagcentre.ca/Docs/Saskatchewan%20Research%20Needs%20Survey%20with%20cover.pdf (access on 13 December 2009).
- Organic Agriculture Centre of Canada. Research Needs Assessment of Manitoba Organic Farmers. Available online: http://oacc.info/Docs/Manitoba%20Research%20Needs%20Survey%20Final%20Report_dec08.pdf (access on 13 December 2009).
- Organic Agriculture Centre of Canada. Research Needs Assessment of Alberta Organic Farmers. Available online: http://www.organicagcentre.ca/Docs/Alberta%20survey%20Nov12.pdf (access on 13 December 2009).
- Canadian Organic Growers Economics of Organic Farming. In Organic Field Crop Handbook; Wallace, J. (Ed.) Canadian Organic Growers: Ottawa, ON, Canada, 2001; pp. 8–10.
- Mason, H.E.; Spaner, D. Competitive ability of wheat in conventional and organic management systems: A review of the literature. Can. J. Plant Sci. 2006, 86, 333–343. [Google Scholar] [CrossRef]
- Johnson, E.; Wolf, T.; Caldwell, B.; Barbour, R.; Holm, R.; Sapsford, K. Efficacy of vinegar (acetic acid) as an organic herbicide (ADF Project # 20020202, AAFC Project # A03637. Available online: http://www.agr.gov.sk.ca/apps/adf/adf_admin/reports/20020202.pdf (access on 31 December 2009).
- Bailey, K.; Johnson, E.; Kutcher, R.; Braaten, C. An Organic Option for Broadleaved Weed Control in Cereals Using a Microbial Herbicide; Interim Report. Organic Sector Market Development Initiative (OSMDI), Canadian Wheat Board: Manitoba, Canada, 2009. Available online: http://www.organicagcentre.ca/Docs/OSMDI%20Oct%202009%20Bailey%20Interim%20Report.pdf (access on 31 December 2009).
- Lafond, G.P.; Derksen, D.A. Long-term potential of conservation tillage on the Canadian prairies. Can. J. Plant Pathol. 1996, 18, 151–158. [Google Scholar] [CrossRef]
- Trewavas, A. A critical assessment of organic farming-and-food assertions with particular respect to the UK and the potential environmental benefits of no-till agriculture. Crop Prot. 2004, 23, 757–781. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Coffman, C.B.; Mangum, R.W. Potential Long-Term Benefits of No-Tillage and Organic Cropping Systems for Grain Production and Soil Improvement. Agron. J. 2007, 99, 1297–1305. [Google Scholar] [CrossRef]
- Blackshaw, R.E. Tillage intensity affects weed communities in agroecosystems. In Invasive Plants: Ecological and Agricultural Aspects; Inderjit, S., Ed.; Birkhauser Verlag: Basel, Switzerland, 2005; pp. 209–221. [Google Scholar]
- Nelson, A. Soil Erosion Risk and Mitigation through Crop Rotation on Organic and Conventional Cropping Systems. M.Sc. Thesis, University of Manitoba, Winnipeg, MB, Canada, 2005. [Google Scholar]
- Entz, M.H.; Baron, V.S.; Carr, P.M.; Meyer, D.W.; Smith, S.R.; McCaughey, W.P. Potential of forages to diversify cropping systems in the northern Great Plains. Agron. J. 2002, 94, 240–250. [Google Scholar] [CrossRef]
- Smil, V. Feeding the World: A Challenge for the Twenty-First Century; The MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Wiens, M.J.; Entz, M.H.; Martin, R.C.; Hammermeister, A.M. Agronomic benefits of alfalfa mulch applied to organically managed spring wheat. Can. J. Plant Sci. 2006, 86, 121–131. [Google Scholar] [CrossRef]
- Malhi, S.S.; Brandt, S.A.; Lemke, R.; Moulin, A.P.; Zentner, R.P. Effects of input level and crop diversity on soil nitrate-N, extractable P, aggregation, organic C and N, and nutrient balance in the Canadian Prairie. Nutr. Cycl. Agroecosyst. 2009, 84, 1–22. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Moyer, J.R.; Doram, R.C.; Boswell, A.L. Yellow sweetclover, green manure, and its residues effectively suppress weeds during fallow. Weed Sci. 2001, 49, 406–413. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Moyer, J.R.; Doram, R.C.; Boswall, A.L.; Smith, E.G. Suitability of undersown sweetclover as a fallow replacement in semiarid cropping systems. Agron. J. 2001, 93, 863–868. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Molnar, L.J.; Moyer, J.R. Suitability of legume cover crop-winter wheat intercrops on the semi-arid Canadian Prairies. Can. J. Plant Sci. 2010, (in press). [Google Scholar]
- Moyer, J.R.; Blackshaw, R.E.; Huang, H.C. Effect of sweetclover cultivars and management practices on following weed infestations and wheat yield. Can. J. Plant Sci. 2007, 87, 973–983. [Google Scholar] [CrossRef]
- O’Donovan, J.T.; Blackshaw, R.E.; Harker, K.N.; Clayton, G.W.; Moyer, J.R.; Dosdall, L.M.; Maurice, D.C.; Turkington, T.K. Integrated approaches to managing weeds in spring-sown crops in western Canada. Crop Prot. 2007, 26, 390–398. [Google Scholar] [CrossRef]
- O’Donovan, J.T.; Blackshaw, R.E.; Harker, K.N.; Clayton, G.W.; McKenzie, R. Variable crop plant establishment contributes to differences in competitiveness with wild oat among cereal varieties. Can. J. Plant Sci. 2005, 85, 771–776. [Google Scholar] [CrossRef]
- Nazarko, O.M.; Van Acker, R.C.; Entz, M.H. Strategies and tactics for herbicide use reduction in field crops in Canada: A review. Can. J. Plant Sci. 2005, 85, 457–479. [Google Scholar] [CrossRef]
- O’Donovan, J.T.; Harker, K.N.; Clayton, G.W.; Newman, J.C.; Robinson, D.; Hall, L.M. Barley seeding rate influences the effects of variable herbicide rates on wild oat. Weed Sci. 2001, 49, 746–754. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Beckie, H.J.; Molnar, L.J.; Entz, T.; Moyer, J.R. Combining agronomic practices and herbicides improves weed management in wheat-canola rotations within zero-tillage production systems. Weed Sci. 2005, 53, 528–535. [Google Scholar] [CrossRef]
- Harker, K.N.; Clayton, G.W.; Blackshaw, R.E.; O’Donovan, J.T.; Stevenson, F.C. Seeding rate, herbicide timing and competitive hybrids contribute to integrated weed management in canola (Brassica napus). Can. J. Plant Sci. 2003, 83, 433–440. [Google Scholar] [CrossRef]
- Smith, E.G.; Upadhyay, B.M.; Blackshaw, R.E.; Beckie, H.J.; Harker, K.N.; Clayton, G.W. Economic benefits of integrated weed management systems for field crops in the Dark Brown and Black soil zones of western Canada. Can. J. Plant Sci. 2006, 86, 1273–1279. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Harker, K.N.; O’Donovan, J.T.; Beckie, H.J.; Smith, E.G. Ongoing development of integrated weed management systems on the Canadian prairies. Weed Sci. 2008, 56, 146–150. [Google Scholar] [CrossRef]
- Mason, H.; Navabi, A.; Frick, B.; O’Donovan, J.; Spaner, D. Cultivar and seeding rate effects on the competitive ability of spring cereals grown under organic production in northern Canada. Agron. J. 2007, 99, 1199–1207. [Google Scholar] [CrossRef]
- Beavers, R.L.; Hammermeister, A.M.; Frick, B.; Astatkie, T.; Martin, R.C. Spring wheat yield response to variable seeding rates in organic farming systems at different fertility regimes. Can. J. Plant Sci. 2008, 88, 43–52. [Google Scholar] [CrossRef]
- Baird, J.M.; Shirtliffe, S.J.; Walley, F.L. Optimal seeding rate for organic production of lentil in the northern Great Plains. Can. J. Plant Sci. 2009, 89, 1089–1097. [Google Scholar] [CrossRef]
- Baird, J.M.; Walley, F.L.; Shirtliffe, S.J. Optimal seeding rate for organic production of field pea in the northern Great Plains. Can. J. Plant Sci. 2009, 89, 455–464. [Google Scholar] [CrossRef]
- Kaut, A.H.E.E.; Mason, H.E.; Navabi, A.; O’Donovan, J.T.; Spaner, D. Organic and conventional management of mixtures of wheat and spring cereals. Agron. Sustain. Dev. 2008, 28, 363–371. [Google Scholar] [CrossRef]
- Pridham, J.C.; Entz, M.H.; Martin, R.C.; Hucl, R.J. Weed, disease and grain yield effects of cultivar mixtures in organically managed spring wheat. Can. J. Plant Sci. 2007, 87, 855–859. [Google Scholar] [CrossRef]
- Kaut, A.H.E.E.; Mason, H.E.; Navabi, A.; O’Donovan, J.T.; Spaner, D. Performance and stability of performance of spring wheat variety mixtures in organic and conventional management systems in western Canada. J. Agr. Sci. 2009, 147, 141–153. [Google Scholar] [CrossRef]
- Pridham, J.C.; Entz, M.H. Intercropping spring wheat with cereal grains, legumes, and oilseeds fails to improve productivity under organic management. Agron. J. 2008, 100, 1436–1442. [Google Scholar] [CrossRef]
- Murphy, K.M.; Dawson, J.C.; Jones, S.S. Relationship among phenotypic growth traits, yield and weed suppression in spring wheat landraces and modern cultivars. Field Crop Res. 2008, 105, 107–115. [Google Scholar] [CrossRef]
- Mason, H.E.; Navabi, A.; Frick, B.L.; O’Donovan, J.T.; Spaner, D.M. The weed-competitive ability of Canada western red spring wheat cultivars grown under organic management. Crop Sci. 2007, 47, 1167–1176. [Google Scholar] [CrossRef]
- Mason, H.; Goonewardene, L.; Spaner, D. Competitive traits and the stability of wheat cultivars in differing natural weed environments on the northern Canadian Prairies. J. Agr. Sci. 2008, 146, 21–33. [Google Scholar] [CrossRef]
- Reid, T.A.; Navabi, A.; Cahill, J.C.; Salmon, D.; Spaner, D. A genetic analysis of weed competitive ability in spring wheat. Can. J. Plant Sci. 2009, 89, 591–599. [Google Scholar] [CrossRef]
- Reid, T.A.; Yang, R.C.; Salmon, D.F.; Spaner, D. Should spring wheat breeding for organically managed systems be conducted on organically managed land? Euphytica 2009, 169, 239–252. [Google Scholar] [CrossRef]
- Murphy, K.M.; Campbell, K.G.; Lyon, S.R.; Jones, S.S. Evidence of varietal adaptation to organic farming systems. Field Crop Res. 2007, 102, 172–177. [Google Scholar] [CrossRef]
- Canadian General Standards Board. Organic Production Systems General Principles and Management Standards. Available online: http://www.organicagcentre.ca/Docs/Cdn_Stds_Principles2006_e.pdf (access on 16 January 2010).
- Martin, R.C.; Lynch, D.; Frick, B.; van Straaten, P. Phosphorous status on Canadian organic farms. J. Sci. Food Agric. 2007, 87, 2737–2740. [Google Scholar] [CrossRef]
- Malhi, S.S.; Brandt, S.A.; Ulrich, D.; Lemke, R.; Gill, K.S. Accumulation and distribution of nitrate-nitrogen and extractable phosphorous in the soil profile under various alternative cropping systems. J. Plant Nutr. 2002, 25, 2499–2520. [Google Scholar] [CrossRef]
- Kabir, Z.; OHalloran, I.P.; Fyles, J.W.; Hamel, C. Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: Hyphal density and mycorrhizal root colonization. Plant Soil 1997, 192, 285–293. [Google Scholar] [CrossRef]
- Douds, D.D.; Galvez, L.; Franke-Snyder, M.; Reider, C.; Drinkwater, L.E. Effect of compost addition and crop rotation point upon VAM fungi. Agr. Ecosyst. Environ. 1997, 65, 257–266. [Google Scholar] [CrossRef]
- Brechelt, A. Effect of Different Organic Manures on the Efficiency of Va Mycorrhiza. Agr. Ecosyst. Environ. 1990, 29, 55–58. [Google Scholar] [CrossRef]
- Hamel, C.; Strullu, D.G. Arbuscular mycorrhizal fungi in field crop production: Potential and new direction. Can. J. Plant Sci. 2006, 86, 941–950. [Google Scholar] [CrossRef]
- Nelson, A.; Spaner, D. Cropping systems management, soil microbial communities, and soil biological fertility: A review. In Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming, Sustainable Agriculture Reviews 4; Lichtfouse, E., Ed.; Springer Science+Business Media B.V.: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Clapperton, M.J.; Yin Chan, K.; Larney, F.J. Managing the soil habitat for enhanced biological fertility. In Soil Biological Fertility—A Key to Sustainable Land Use in Agriculture; Abbott, L.K., Murphy, D.V., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 203–222. [Google Scholar]
- Welsh, C.; Tenuta, M.; Flaten, D.N.; Thiessen-Martens, J.R.; Entz, M.H. High Yielding Organic Crop Management Decreases Plant-Available but Not Recalcitrant Soil Phosphorus. Agron. J. 2009, 101, 1027–1035. [Google Scholar] [CrossRef]
- Duval, J. Co-dependency between Organic and Conventional Agriculture: Transient or Long-lasting? Available online: http://www.organicagcentre.ca/Docs/DiscussionPapers09/Codependency%20final%20version.pdf (access on 18 January 2010).
- Russelle, M.P.; Entz, M.H.; Franzluebbers, A.J. Reconsidering Integrated Crop-Livestock Systems in North America. Agron. J. 2007, 99, 325–334. [Google Scholar] [CrossRef]
- Entz, M.H.; Hoeppner, J.W.; Wilson, L.; Tenuta, M.; Bamford, K.C.; Holliday, N. Influence of organic management with different crop rotations on selected productivity parameters in a long-term Canadian field study. In Researching Sustainable Systems, Proceedings of the International Scientific Conference on Organic Agriculture, Adeledaide, Australia, 21–23 September 2005.
- Lynch, D. Environmental impacts of organic agriculture: A Canadian perspective. Can. J. Plant Sci. 2009, 89, 621–628. [Google Scholar] [CrossRef]
- Hoeppner, J.W.; Entz, M.H.; McConkey, B.G.; Zentner, R.P.; Nagy, C.N. Energy use and efficiency in two Canadian organic and conventional crop production systems. Renew. Agr. Food Syst. 2006, 21, 60–67. [Google Scholar] [CrossRef]
- Ammann, K. Why farming with high tech methods should integrate elements of organic agriculture. New Biotechnol. 2009, 25, 378–388. [Google Scholar] [CrossRef]
- Ammann, K. Integrated farming: why organic farmers should use transgenic crops. New Biotechnol. 2008, 25, 101–107. [Google Scholar] [CrossRef]
- AC Nielsen. Functional Foods and Organics: A Global AC Nielsen Online Survey on Consumer Behavior and Attitudes. Available online: http://it.nielsen.com/trends/2005_cc_functional_organics.pdf.pdf (access on 17 January 2010).
- West, G.E.; Gendron, C.; Larue, B.; Lambert, R. Consumers’ valuation of functional properties of foods: Results from a Canada-wide survey. Can. J. Agr. Econ. 2002, 50, 541–558. [Google Scholar] [CrossRef]
- Annett, L.E.; Muralidharan, V.; Boxall, P.C.; Cash, S.B.; Wismer, W.V. Influence of health and environmental information on hedonic evaluation of organic and conventional bread. J. Food Sci. 2008, 73, H50–H57. [Google Scholar] [CrossRef] [PubMed]
- Annett, L.E.; Spaner, D.; Wismer, W.V. Sensory profiles of bread made from paired samples of organic and conventionally grown wheat grain. J. Food Sci. 2007, 72, S254–S260. [Google Scholar] [CrossRef] [PubMed]
- Mason, H.; Navabi, A.; Frick, B.; O’Donovan, J.; Niziol, D.; Spaner, D. Does growing Canadian Western Hard Red Spring wheat under organic management alter its breadmaking quality? Renew. Agr. Food Syst. 2007, 22, 157–167. [Google Scholar] [CrossRef]
- Gelinas, P.; Morin, C.; Reid, J.F.; Lachance, P. Wheat cultivars grown under organic agriculture and the bread making performance of stone-ground whole wheat flour. Int. J. Food Sci. Technol. 2009, 44, 525–530. [Google Scholar] [CrossRef]
- Turmel, M.S.; Entz, M.H.; Bamford, K.C.; Martens, J.R.T. The influence of crop rotation on the mineral nutrient content of organic vs. conventionally produced wheat grain: Preliminary results from a long-term field study. Can. J. Plant Sci. 2009, 89, 915–919. [Google Scholar] [CrossRef]
- Nelson, A.; Quideau, S.; Frick, B.; Hucl, P.; Thavarajah, D.; Clapperton, J.; Spaner, D. The soil microbial community and grain micronutrient content of wheat grown organically and conventionally. Can. J. Plant Sci. 2010. (submitted). [Google Scholar]
- Bourn, D.; Prescott, J. A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods. Crit. Rev. Food Sci. 2002, 42, 1–34. [Google Scholar] [CrossRef]
- Cranfield, J.; Deaton, B.J.; Shellikeri, S. Evaluating Consumer Preferences for Organic Food Production Standards. Can J. Agr. Econ. 2009, 57, 99–117. [Google Scholar] [CrossRef]
- Smith, E.G.; Clapperton, M.J.; Blackshaw, R.E. Profitability and risk of organic production systems in the northern Great Plains. Rene. Agr. Food Syst. 2004, 19, 152–158. [Google Scholar] [CrossRef]
- Khakbazan, M.; Grant, C.A.; Irvine, R.B.; Mohr, R.M.; McLaren, D.L.; Monreal, M. Influence of alternative management methods on the economics of flax production in the Black Soil Zone. Can. J. Plant Sci. 2009, 89, 903–913. [Google Scholar] [CrossRef]
- Degenhardt, R.; Martin, R.; Spaner, D. Organic farming in Central Alberta: Current trends, production constraints and research needs. J. Sustain. Agr. 2005, 27, 153–173. [Google Scholar] [CrossRef]
- Vanloqueren, G.; Baret, P.V. How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Res. Policy 2009, 38, 971–983. [Google Scholar] [CrossRef]
- Love, B.; Spaner, D. Agrobiodiversity: Its value, measurement, and conservation in the context of sustainable agriculture. J. Sustain. Agr. 2007, 31, 53–82. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Snyder, C.; Spaner, D. The Sustainability of Organic Grain Production on the Canadian Prairies—A Review. Sustainability 2010, 2, 1016-1034. https://doi.org/10.3390/su2041016
Snyder C, Spaner D. The Sustainability of Organic Grain Production on the Canadian Prairies—A Review. Sustainability. 2010; 2(4):1016-1034. https://doi.org/10.3390/su2041016
Chicago/Turabian StyleSnyder, Crystal, and Dean Spaner. 2010. "The Sustainability of Organic Grain Production on the Canadian Prairies—A Review" Sustainability 2, no. 4: 1016-1034. https://doi.org/10.3390/su2041016
APA StyleSnyder, C., & Spaner, D. (2010). The Sustainability of Organic Grain Production on the Canadian Prairies—A Review. Sustainability, 2(4), 1016-1034. https://doi.org/10.3390/su2041016