Urban Planning for a Renewable Energy Future: Methodological Challenges and Opportunities from a Design Perspective
Abstract
:1. Introduction
2. Theoretical Framework and Literature Discussion
2.1. Environmental Assessments
2.1.1. Life Cycle Assessment
2.1.2. Primary Energy versus Exergy
2.1.3. A Unification Theory?
2.1.4. The Altered ‘Trias Energetica’ or ‘New Stepped Strategy’ as an Analytical Work Tool
- 01. Reduce consumption (using intelligent and bioclimatic design)
- 02. Reuse waste energy streams
- 03. Use renewable energy sources and ensure that waste is reused as food
- 04. (Supply the remaining demand cleanly and efficiently)
2.2. Environmental Assessment versus Integrated Sustainability Evaluation
- The range of modal aspects concerning SD reaches until the ethic dimension (similar to the field of Human Rights), as we can derive from expressed sustainability descriptions such as the Brundtland definition [37]. Therefore SD requires more than a strict Planet, People, Prosperity approach, and should explicitly address the value-related trade-offs that characterize decision-making, in particular in the contexts of urban and spatial planning. These trade-offs are indeed deeply influenced by the social and ethic norms held by the actors involved in the decision process;
- Sustainability is thus a human normative concept. However, it remains founded in the biophysical world characterized by its own, deterministic laws. This implies that normative conventions describing sustainability should account of related biophysical effects. As an example, this is reflected in the structure of the Kyoto protocol where a normative convention on preventing climate change defines how much CO2 can be emitted. The amount of climate change (and therefore of carbon emissions) we judge to be acceptable is however based on a normative appreciation;
- In accordance with the former principles, no social or economic sustainability are possible without environmental sustainability for reasons of retrocipative foundation [34]. Weak sustainability (e.g., [38]) is therefore not feasible, or in other words, sustainable development is integrated, or it is not at all;
- From an analytical point of view, a multidisciplinary framework is needed for the proper assessment of all the independent modal spheres concerned by SD;
- And thereby scientific disciplines deliver constitutive, although partial assessments through their specific idiom. Determinative (quantitative) idioms, as well as strictly social or economic idioms make up the building stones of an integrated assessment, but do not deliver an exclusive or autonomous ordeal by themselves. This observation holds in particular for monetizing techniques such as cost benefit analysis.
3. Constituents of the Sustainable Built Environment versus Constituents of the Renewable Energy Infrastructure
- Reduce energy demand by passive architectural and urban control measures: location choice, response to local climate and relief conditions, architectural and urban compactness, orientation and daylighting features, building insulation levels, use of thermal capacity and buffer spaces, insertion of natural elements for shading, wind braking and urban heat island reduction, etc. It is interesting to observe that many buildings and cities constructed prior to the industrial revolution heavily relied on this type of climate control because energy sources were scarce and costly (see e.g., [39]). Effects of urban morphology on traffic demand make up a second important contributing factor, and related savings in transport energy should as a principle also be considered as a passive benefit;
- Optimize energy streams from an exergetic point of view. For the built environment, low temperature (and thus low exergy) heat sources are of particular importance. They however require proper building installations (e.g., floor or wall heating and heat storage facilities). A similar remark could be made about cooling. Moreover, in an urban context, cooling and heating demands exist simultaneously or can at least be time-buffered to do so. Therefore, two major constituents of exergy optimization emerge: direct sourcing of low exergy heat sources (solar heat, ambient heat, recovery of waste heat, etc.), and heat exchange and storage between different building programs.
- Provide renewable energy to fill in the remaining demand. This energy may be provided at the following three scale levels: single building (intra-urban micro-scale), building group/district (intra-urban meso-scale), or city/region (extra-urban macro-scale). The question which energy provision is most appropriate at which scale level shall basically be answered through an assessment as discussed in Section 2. It thus concerns an efficiency matter, but needs embedding in a wider framework of SD goals.
3.1. Reducing Urban Energy Demand through Passive Measures
3.2. Exergetic Optimization of Building Related Energy Streams
3.3. Renewable Energy Provision
- Macro-scale: large hydropower, wind farms, concentrated solar power plants (CSP), large-scale solar parks, large biomass plants, deep geothermal heat and/or electricity generation. This scale is somewhat similar to current electricity production patterns;
- Meso-scale: district systems including CHP plants and related networks, mid-scale solar applications such as asphalt collectors and small to medium solar fields (PV or heat), geothermal applications at the district scale (open heat/cold systems);
- Micro-scale: renewable production at the scale of the individual building: mainly PV, solar boilers, micro CHP and closed heat/cold systems.
4. Discussion and Conclusions
Conflict of Interest
References
- van Kann, F.; Leduc, W. Synergy between Regional Planning and Energy as a Contribution to a Carbon Neutral Society—Energy Cascading as a New Principle for Mixed Land-use. In Proceedings of the Scupad Conference: Planning for the Carbon Neutral World: Challenges for Cities and Regions, Salzburg, Austria, 15–18 May 2008.
- Vandevyvere, H. Strategieën voor een Verhoogde Implementatie van Duurzaam Bouwen in Vlaanderen. Toepassing op het Schaalniveau van het Stadsfragment (Strategies Towards Increased Sustainable Building in Flanders. Application on the Scale of the Urban Fragment). Ph.D. Dissertation, K.U. Leuven, Leuven, Belgium, 2010. [Google Scholar]
- Stöglehner, G.; Narodoslawsky, M. Energy-conscious Planning Practice in Austria: Strategic Planning for Energy-optimized Urban Structures. In Sustainable Energy Landscapes: Designing, Planning and Development; Stremke, S., van den Dobbelsteen, A., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2012. [Google Scholar]
- Allacker, K. Sustainable Building: The Development of an Evaluation Method; K.U.Leuven: Leuven, Belgium, 2010. [Google Scholar]
- French, S.; Geldermann, J. The varied contexts of environmental decision problems and their implications for decision support. Environ. Sci. Policy 2005, 8, 378–391. [Google Scholar] [CrossRef]
- Deakin, M.; Mitchell, G.; Nijkamp, P.; Vreeker, R. Introduction. In Sustainable Urban Development Volume 2: The Environmental Assessment Methods; Deakin, M., Mitchell, G., Nijkamp, P., Vreeker, R., Eds.; Routledge: London, UK, 2007. [Google Scholar]
- Lombardi, P.; Brandon, P. The Multimodal System Approach to Sustainability Planning Evaluation. In Sustainable Urban Development Volume 2: The Environmental Assessment Methods; Deakin, M., Mitchell, G., Nijkamp, P., Vreeker, R., Eds.; Routledge: London, UK, 2007. [Google Scholar]
- Vandevyvere, H. How to cut across the catch-all? A philosophical-cultural framework for assessing sustainability. Int. J. Innov. Sustain. Dev. 2011, 5, 403–424. [Google Scholar]
- U.S. Green Building Council, LEED 2009 for Neighborhood Development Rating System (Updated November 2011); Green Building Council: Washington, DC, USA, 2011.
- BRE BREEAM Communities, SD5065B. Technical Guidance Manual; BRE Global Ltd: Watford, UK, 2009.
- ISO, ISO 14040:2006 Environmental Management—Life Cycle Assessment—Principles and Framework; ISO: Geneva, Switzerland, 2006.
- Sørensen, B. Life-Cycle Analysis of Energy Systems: From Methodology to Applications; Royal Society of Chemistry Publishing: Cambridge, UK, 2011. [Google Scholar]
- Goedkoop, M.; Spriensma, R. The Eco-indicator 99 Methodology Report: A Damage Oriented LCIA Method; Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer: Den Haag, The Netherlands, 1999. [Google Scholar]
- Dones, R.; Heck, T. LCA-based Evaluation of Ecological Impacts and External Costs of Current and New Electricity and Heating Systems. In Proceedings of the Material Research Society Fall Meeting 2005, Symposium G: Life Cycle Analysis Tool for ‘Green’ Materials and Process Selection, Boston, MA, USA, 28–30 November 2005.
- Kampman, B.; Bergsma, G.; Schepers, B.; Croezen, H.; Fritsche, U.R.; Henneberg, K.; Huenecke, K.; Molenaar, J.W.; Kessler, J.J.; Slingerland, S.; van der Linde, C. BUBE: Better Use of Biomass for Energy (Background Report to the Position Paper of IEA RETD and IEA Bioenergy); CE Delft/Öko-Institut: Delft, The Netherlands and Darmstadt, Germany, 2010. [Google Scholar]
- Verbeeck, G. Optimisation of Extremely Low Energy Residential Buildings. Ph.D. Dissertation, K.U. Leuven, Leuven, Belgium, 2007. [Google Scholar]
- Kohler, N. Life Cycle Analysis of Buildings, Groups of Buildings and Urban Fragments. In Sustainable Urban Development Volume 2: The Environmental Assessment Methods; Deakin, M., Mitchell, G., Nijkamp, P., Vreeker, R., Eds.; Routledge: London, UK, 2007. [Google Scholar]
- Torio, H.; Schmidt, D. ECBCS Annex 49—Low Exergy Systems for High Performance Buildings and Communities (Annex 49 Final Report); Fraunhofer IBP/IEA: München, Germany, 2011. [Google Scholar]
- Stremke, S.; van den Dobbelsteen, A.; Koh, J. Exergy landscapes: Exploration of second-law thinking towards sustainable landscape design. Int. J. Exergy 2011, 8, 148–174. [Google Scholar] [CrossRef]
- Tillie, N.; van den Dobbelsteen, A.; Doepel, D.; de Jager, W.; Joubert, M.; Mayenburg, D. REAP Rotterdam Energy Approach and Planning: Towards CO2- Neutral Urban Development; Pieter Kers: Rotterdam, The Netherlands, 2009. [Google Scholar]
- Schmidt, D. Low exergy systems for high-performance buildings and communities. Energy Build. 2009, 41, 331–336. [Google Scholar] [CrossRef]
- Van Steertegem, M.E. MIRA-T Milieurapport Vlaanderen, Indicatorrapport ’07; Vlaamse Milieumaatschappij: Aalst, Belgium, 2007. [Google Scholar]
- Hens, H. Duurzaam Bouwen; Francqui Leerstoel, Vrije Universiteit Brussel: Brussel, Belgium, 2006. [Google Scholar]
- van den Dobbelsteen, A.; Broersma, S.; Stremke, S. Energy potential mapping for energy-producing neighborhoods. Int. J. Sustain. Build. Technol. Urban Dev. 2011, 2, 170–176. [Google Scholar] [CrossRef]
- Stremke, S.; Kann, F.V.; Koh, J. Integrated visions (Part I): Methodological framework. Eur. Plan. Stud. 2012, 20, 305–320. [Google Scholar] [CrossRef]
- Jørgensen, S.E. Eco-Exergy as Sustainability; WIT Press: Southhampton, UK, 2006. [Google Scholar]
- Dewulf, J.; Van Langenhove, H.; Muys, B.; Bruers, S.; Bakshi, B.R.; Grubb, G.F.; Paulus, D.M.; Sciubba, E. Exergy: Its potential and limitations in environmental science and technology. Environ. Sci. Technol. 2008, 42, 2221–2232. [Google Scholar]
- Sciubba, E.; Bastianoni, S.; Tiezzib, E. Exergy and extended exergy accounting of very large complex systems with an application to the province of Siena, Italy. J. Environ. Manag. 2008, 86, 372–382. [Google Scholar] [CrossRef]
- Jørgensen, S.E. Employing Exergy and Carbon Models to Determine the Sustainability of Alternative Energy Landscapes. In Sustainable Energy Landscapes: Designing, Planning and Development; Stremke, S., van den Dobbelsteen, A., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2012. [Google Scholar]
- Lysen, E.H. The Trias Energetica: Solar Strategies for Developing Countries. In Proceedings of the Eurosun Conference; Freiburg, Germany: 16–19 September 1996.
- Broersma, S.; van den Dobbelsteen, A. Synergie Tussen Regionale Planning en Exergie: SREX; Publikatieburo Bouwkunde: Delft, The Netherlands, 2011. [Google Scholar]
- Bauler, T. Indicators for Sustainable Development: A Discussion of Their Usability. Ph.D. Dissertation, Université Libre de Bruxelles, Brussels, Belgium, 2007. [Google Scholar]
- Mondini, G.; Valle, M. Environmental Assessments Within the EU. In Sustainable Urban Development Volume 2: The Environmental Assessment Methods; Deakin, M., Mitchell, G., Nijkamp, P., Vreeker, R., Eds.; Routledge: London, UK, 2007. [Google Scholar]
- Dooyeweerd, H. A New Critique of Theoretical Thought, Vol. 2: The General Theory of the Modal Spheres; The Presbyterian and Reformed Publisher Company: Phillipsburg, NJ, USA, 1955. [Google Scholar]
- De Raadt, J.D.R. A sketch for humane operational research in a technological society. Syst. Pract. 1997, 10, 421–441. [Google Scholar] [CrossRef]
- Basden, A. The critical theory of Herman Dooyeweerd? J. Inf. Technol. 2002, 17, 257–269. [Google Scholar] [CrossRef]
- WCED, Our Common Future (Brundtland Report). United Nations—World Commission on Environment and Development: Geneva, Switzerland, 1987.
- Cabeza-Gutés, M. The concept of weak sustainability. Ecol. Econ. 1996, 17, 147–156. [Google Scholar] [CrossRef]
- Knowles, R.L. Energy and Form: An Ecological Approach to Urban Growth; MIT Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Salat, S. Energy loads, CO2 emissions and building stocks: Morphologies, typologies, energy systems and behaviour. Build. Res. Inf. 2009, 37, 598–609. [Google Scholar] [CrossRef]
- Ratti, C.; Baker, N.; Steemers, K. Energy consumption and urban texture. Energy Build. 2005, 37, 762–776. [Google Scholar] [CrossRef]
- Salat, S.; Nowacki, C. De l’importance de la morphologie dans l’efficience énergétique des villes. Energ. Territ. Liaison Energ. Francoph. 2010, 86, 141–146. [Google Scholar]
- Brown, R.D.; Gillespie, T.J. Microclimatic Landscape Design: Creating Thermal Comfort and Energy Efficiency; John Wiley & Sons: New York, NY, USA, 1995. [Google Scholar]
- Robinette, G.O.; McClenon, C. Landscape Planning for Energy Conservation; Van Nostrand Reinhold: New York, NY, USA, 1983. [Google Scholar]
- Thompson, J.W.; Sorvig, K. Sustainable Landscape Construction: A Guide to Green Building Outdoors; Island Press: Washington, DC, USA, 2000. [Google Scholar]
- Shashua-Bar, L.; Hoffman, M.E.; Tzamir, Y. Integrated thermal effects of generic built forms and vegetation on the UCL microclimate. Build. Environ. 2006, 41, 343–354. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- Alexandri, E.; Jones, P. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build. Environ. 2008, 43, 480–493. [Google Scholar] [CrossRef]
- Santamouris, M. Environmental Design of Urban Buildings: An Integrated Approach; Earthscan Publications: London, UK, 2006. [Google Scholar]
- Newman, P.; Kenworthy, J.R. Cities and Automobile Dependence: An International Sourcebook; Gower: Aldershot, UK, 1989. [Google Scholar]
- Brick, K. Report Summary—Follow Up of Environmental Impact in Hammarby Sjöstad by Sickla Udde, Sickla Kaj, Lugnet and Proppen; Grontmij AB: Stockholm, Sweden, 2008. [Google Scholar]
- Hodge, J.; Haltrecht, J. BedZED Seven Years on: The Impact of the UK’s Best Known Ecovillage and Its Residents. BioRegional: Hackbridge, UK, 2009. [Google Scholar]
- van den Dobbelsteen, A.; de Wilde, S. Space use optimisation and sustainability—Environmental assessment of space use concepts. J. Environ. Manag. 2004, 73, 81–89. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Shruthi, B.V. Spatial mapping of renewable energy potential. Renew. Sustain. Energy Rev. 2007, 11, 1460–1480. [Google Scholar] [CrossRef]
- Clement-Nyns, K.; Haesen, E.; Driesen, J. The impact of vehicle-to-grid on the distribution grid. Electr. Power Syst. Res. 2011, 81, 185–192. [Google Scholar] [CrossRef]
- Saelens, D. Optimale Inzet van Thermische Opslag en Actieve Energieconcepten in Gebouwen om Maximaal in te Spelen op de Elektriciteitsmarkt en Behoeften van het net. 2011. Available online: http://www.kuleuven.be/onderzoek/onderzoeksdatabank/project/3E11/3E110062.htm (accessed on 18 June 2012).
- Bühl, J. Solarenergienutzung und Effizienzsteigerung in und an Gebäuden. In Klimawandel und ökologischer Umbau der Industriegesellschaft; Europäischen Informations-Zentrum in der Thüringer Staatskanzlei: Erfurt, Germany, 2010. [Google Scholar]
- Czisch, G. Scenarios for a Future Electricity Supply—Cost-Optimized Approaches to Supplying Europe and its Neighbours with Electricity from Renewable Energies. Ph.D. Dissertation, Universität Kassel, Kassel, Germany, 2006. [Google Scholar]
- Wächter, P.; Ornetzeder, M.; Rohracher, H.; Schreuer, A.; Knoflacher, M. Towards a sustainable spatial organization of the energy system: Backcasting experiences from Austria. Sustainability 2012, 4, 193–209. [Google Scholar] [CrossRef]
- Roggema, R. INCREASE II Conference Proceedings; Province of Groningen: Groningen, The Netherlands, 2009.
- Stremke, S.; Koh, J. Integration of ecological and thermodynamic concepts in the design of sustainable energy landscapes. Landsc. J. 2011, 30, 194–213. [Google Scholar] [CrossRef]
- Barker, T.; Bashmakov, I.; Bernstein, L.; Bogner, J.E.; Bosch, P.R.; Dave, R.; Davidson, O.R.; Fisher, B.S.; Gupta, S.; Halsnæs, K.; et al. Technical Summary. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2007. [Google Scholar]
- Jaeger, C.; Paroussos, L.; Mangalagiu, D.; Kupers, R.; Mandel, A.; Tàbara, J. A New Growth Path for Europe: Generating Prosperity and Jobs in the Low-Carbon Economy; Synthesis Report. European Climate Forum e.V.: Potsdam, Germany, 2011. [Google Scholar]
- McKinsey-and-Company Pathways to World-Class Energy Efficiency in Belgium; McKinsey & Company: Brussels, Belgium, 2009.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vandevyvere, H.; Stremke, S. Urban Planning for a Renewable Energy Future: Methodological Challenges and Opportunities from a Design Perspective. Sustainability 2012, 4, 1309-1328. https://doi.org/10.3390/su4061309
Vandevyvere H, Stremke S. Urban Planning for a Renewable Energy Future: Methodological Challenges and Opportunities from a Design Perspective. Sustainability. 2012; 4(6):1309-1328. https://doi.org/10.3390/su4061309
Chicago/Turabian StyleVandevyvere, Han, and Sven Stremke. 2012. "Urban Planning for a Renewable Energy Future: Methodological Challenges and Opportunities from a Design Perspective" Sustainability 4, no. 6: 1309-1328. https://doi.org/10.3390/su4061309
APA StyleVandevyvere, H., & Stremke, S. (2012). Urban Planning for a Renewable Energy Future: Methodological Challenges and Opportunities from a Design Perspective. Sustainability, 4(6), 1309-1328. https://doi.org/10.3390/su4061309