Towards a Sustainability Education Framework: Challenges, Concepts and Strategies—The Contribution from Urban Planning Perspectives
Abstract
:1. Introduction
1.1. Confusion between Environmental Education and Education for Sustainability
1.2. A Lack of a Conceptual Framework of Education for Sustainability (CFES)
1.3. Vague Themes of Sustainability Education
1.4. Inconsistent Goals of Sustainability Education
2. The Challenges of Education for Sustainability
2.1. The Multidisciplinary Nature of Sustainability
2.2. The Complex and Uncertain Nature of Sustainability
3. The Methods of Building the Sustainability Education Framework
4. The Concepts of the Sustainability Education Framework
4.1. The Normative Category
4.1.1. The Ethical Paradox
4.1.2. Equity
4.1.3. The Utopian Vision of Sustainability
4.1.4. Politics
4.2. The Sustainability Governance Category
4.2.1. Adaptation and Uncertainty Management
4.2.2. The Integrative Concept
4.3. The Energy Category
Ecological Energy
4.4. The Economics Category
The Ecological Economics Theme
4.5. Urban and Community Planning
4.5.1. The Natural Capital
4.5.2. Mitigation
4.5.3. The Sustainable Form
- a. Compactness: Compactness refers to urban contiguity and connectivity and suggests that future urban development should take place adjacent to existing urban structures [73]. Compactness of urban space can minimize transport of energy, water, materials, products, and people [74]. Intensification, a major strategy for achieving compactness, uses urban land more efficiently by increasing the density of development and activity. It includes: development of previously undeveloped urban land; redevelopment of existing buildings or previously developed sites; subdivisions and conversions; and additions and extensions [75].
- b. Sustainable Transport: To achieve sustainable transportation goals ST the plan should address the following criteria: shorter trips; less traffic; encouragement of non-motorized travel such as walking and cycling; safety; transit-oriented development; minimal use of land; equitable access for people and their goods in each generation; and the plan should be powered by renewable energy sources [71,76,77,78].
- c. Density: Density is the ratio of people or dwelling units to land area. Density affects climate change through differences in the consumption of energy, materials, and land for housing, transportation, and urban infrastructure. High density can save significant amounts of energy.
- d. Mixed Land Uses: Mixed land use indicates the diversity of functional land uses such as residential, commercial, industrial, institutional, and transportation. It allows compatible land uses to locate in close proximity to one another and thereby decreases the travel distances between activities, encourages walking and cycling, and reduces the probability of using a car for commuting, shopping, and leisure trips because jobs, shops, and leisure facilities are located nearby [68,79].
- e. Diversity: Diversity is “a multidimensional phenomenon” that promotes additional desirable urban features, including greater variety of housing types, building densities, household sizes, ages, cultures, and incomes [80,81,82]. Diversity is vital for cities and without it the urban system declines as a living place [76] and then homogeneity of built forms, which often produces unattractive, monotonous urban landscapes, leads to increased segregation, driving, congestion, and air pollution [77].
- f. Passive Solar Design: The idea of solar design is to reduce the demand for energy and to provide the best use of passive energy through specific planning and design measures such as siting, orientation, layout, and landscaping. This can make the optimum use of solar gain and microclimatic conditions, and minimize the need for heating or cooling buildings with conventional energy sources [67,83,84]. Yannis ([85], p. 43) summarizes some design parameters for improving urban microclimate: (a) Built form—density and type, to influence airflow, view of sun and sky, and exposed surface area; (b) Street canyon—width-to-height ratio and orientation, to influence warming and cooling processes, thermal and visual comfort conditions, and pollution dispersal; (c) Building design—to influence building heat gains and losses; (d) Urban materials and surfaces finish—to influence absorption, heat storage, and emissivity; (e) Vegetation and bodies of water—to influence evaporative cooling processes on building surfaces and/or in open spaces; and (f) Traffic—reduction, diversion, and rerouting to reduce air and noise pollution and heat discharge.
- g. Greening: Greening the city contributes positively to climate change. It aims to bring nature into the city and has many benefits. It maintains biodiversity, ameliorates the physical urban environment, moderates the urban climate; increases the economic attractiveness of a city; fosters community pride; contributes to health and to education; and functions as a symbol or representation of nature [37,61,86,87,88].
5. The Strategy for Sustainability Education
5.1. How It Should Be Taught: Theory and Practice
5.2. The Way It Should Be Taught
5.2.1. Team Project Strategy
5.2.2. Individual Action Research: An Individual Practical Assignment
5.2.3. Workshops
5.3. What Is to Be Taught: The Themes
6. Conclusions
- a. Sustainability Education Framework is composed of five categories. Each category includes one or more concepts. These categories and their concepts together provide a holistic and interdisciplinary understanding of sustainability. The concepts are derived from different disciplines, and they demonstrate the contribution of various disciplines in general and the urban planning profession in particular. Importantly, at the heart of the conceptual framework rests the normative category and its concepts. This framework suggests that the epistemological foundation of the conceptual framework of education for sustainability is based on the unresolved and fluid paradox of sustainability, which as such can simultaneously inhabit different and contradictory environmental ideologies and practices. The paradox between ‘sustainability’ and ‘development’ is articulated in terms of human norms and ethics [42]. Eventually, the paradoxical relations between sustainability and development tolerate diverse interpretations that are related to a varied spectrum of ideologies and practices. It ranges between two extreme: the ‘domination of nature’ and the ‘intrinsic right of nature’ [42].
- b. This framework consists of various categories and themes, and each one represents a specific domain that is related to sustainability. Apparently, the framework represents ethical, social, economic, ecological, spatial, design, and political aspects of sustainability. In other words, the conceptual framework ‘tells the story’ of sustainable development theories and practices. Importantly, each category and its concepts represent more than one discipline and mostly more than one field of knowledge. Moreover, each category and its concepts have their specific contribution to achieving sustainability in general. And, each has its contribution to the education for sustainability. Yet, these concepts together have the strength to illuminate the sustainability through various disciplines and lenses.
- c. The concepts of eco-form, natural capital, vision, equity, uncertainty governance, and integrative approach are also planning-oriented concepts and they are interlinked. They represent the planning profession and its subdivisions such as spatial planning, economic planning, environmental planning, visioning, procedural, and participatory planning. Education for sustainable development consequently promotes competencies such as critical thinking, imagining future planning scenarios and making decisions in a collaborative way.
- d. Following UNESCO 2012 [1], this paper also suggests that education for sustainable development requires far-reaching changes in the way education is often practiced today in terms of themes, concepts and methods. Eventually, education for sustainable development should allow “every human being to acquire the knowledge, skills, attitudes and values necessary to shape a sustainable future” [1]. It means including key sustainable development issues in both teaching and learning. This requires addressing the interdisciplinary aspects of sustainability, promoting participatory teaching and learning methods that motivate and empower learners to change their behavior and take action for sustainable development. Moreover, However, it must be remembered that education and learning are part of the iterative dynamic of social change: in order to change society, we need to change the way we learn and educate, and in order to change the way we learn and educate we need to change society” [2].
- e. The proposed conceptual framework addresses the lack of scholarship on sustainability in general and of education for sustainability, in particular. In addition, it addresses the multidisciplinary and complex nature of sustainability and identifies the themes or concepts that should be taught. It appears that scholars operate within a peer group that is self-referential and therefore changes too slowly. This is to look at education as itself a system that is embedded in a particular economic and political power structure.
- h. Projects in real world problems and ‘problem-based learning’ are highly recommended in teaching sustainability through the use of the proposed conceptual framework.
- i. This paper suggests that education for sustainability is considerably different in scope, content, concepts and strategies from environmental education.
References
- Sustainable Future Across the Curriculum. Available online: http://www.unesco.org/education/tlsf/mods/theme_b/mod06.html (accessed on 6 August 2012).
- United Nations EducationalScientific and Cultural Organization (UNESCO)EFA-ESD Dialogue: Educating for a Sustainable World; Education for Sustainable Development Policy Dialogue No.1; UNESCO: Paris, France, 2008.
- Available online: http://unesdoc.unesco.org/images/0015/001540/154093e.pdf (accessed on 4 April 2007).
- UN Decade of Education for Sustainable Development. 2005. Available online: http://unesdoc.unesco.org/images/0014/001416/141629e.pdf (accessed on 28 August 2005).
- United Nations EducationalScientific and Cultural Organization (UNESCO)Educating for a Sustainable Future: A Transdisciplinary Vision for Concerted Action; UNESCO: Paris, France, 1997.
- Kevin, J.K.; Newport, D.; White, J.; Townsend, A.R. Higher education’s sustainability imperative: How to practically respond? Int. J. Sustain. High. Educ. 2012, 13, 19–33. [Google Scholar] [CrossRef]
- Beringer, A.; Maik, A.; Scott, W. Editorial. Environ. Educ. Res. 2008, 14, 603–606. [Google Scholar] [CrossRef]
- Summers, M.; Corney, G.; Childs, A. Teaching sustainable development in primary schools: An empirical study of issues for teachers. Environ. Educ. Res. 2003, 9, 327–346. [Google Scholar] [CrossRef]
- Rickinson, M. Learners and learning in environmental education: A critical review of the evidence. Environ. Educ. Res. 2001, 7, 207–320. [Google Scholar] [CrossRef]
- Palmer, J. Environmental Education in the 21st Century: Theory, Practice, Progress and Promise; Routledge: New York, NY, USA, 1998. [Google Scholar]
- González-Gaudiano, E.; Peters, M.A. Environmental Education: Identity, Politics and Citizenship; Sense: Rotterdam, The Netherlands, 2008; pp. 1–11. [Google Scholar]
- Mochizuki, Y.; Fadeeva, Z. Regional centres of expertise on education for sustainable development (RCEs): An overview. Int. J. Sustain. High. Educ. 2008, 9, 369–381. [Google Scholar] [CrossRef]
- Middle East Studies Association (MESA). Mainstreaming Environment and Sustainability across Africa. Proceedings of the Conference Nairobi, Nairobi, Kenya, 17 November 2010; Available online: http://www.unep.org/training/downloads/MESA-Tongji%20meeting%20programme.pdf (accessed on 17 April 2012).
- Asia/Pacific Cultural Centre for UNESCO (ACCU), ESD Journey of HOPE—Holistic Ownership Priorities Empowering. Final Report of the Asia-Pacific Forum for ESD Educators and Facilitators; ACCU: Tokyo, Japan, 2010.
- Jabareen, Y. Teaching sustainability: A multidisciplinary approach. Creat. Educ. 2011, 2, 388–392. [Google Scholar] [CrossRef]
- Barraza, L.; Duque-Aristiza, B.A.M.; Rebolledo, G. Environmental education: From policy to practice. Environ. Educ. Res. 2003, 9, 347–357. [Google Scholar] [CrossRef]
- Nagata, Y. Tales of Hope II Innovative Grassroots Approaches to ESD in Asia and the Pacific ACCU Japan; Asia/Pacific Cultural Centre for UNESCO (ACCU): Tokyo, Japan, 2009. [Google Scholar]
- Segalàs, J.; Mulder, K.F.; Ferrer-Balas, D. What do EESD “experts” think sustainability is? Which pedagogy is suitable to learn it? Results from interviews and Cmaps analysis gathered at EESD 2008. Int. J. Sustain. High. Educ. 2012, 13, 293–304. [Google Scholar] [CrossRef]
- MacVaugh, J.; Mike, N. Introducing sustainability into business education contexts using active learning. Int. J. Sustain. High. Educ. 2012, 13, 72–87. [Google Scholar] [CrossRef]
- Saylan, C.; Blumstein, D.T. The Failure of Environmental Education: And How We Can Fix It; University of California Press: Berkeley, CA, USA, 2011. [Google Scholar]
- UNESCO and UNEP. Intergovernmental Conference on Environmental Education. Available online: http://unesdoc.unesco.org/images/0003/000327/032763eo.pdf (accessed on 22 August 1997).
- Machado Pádua, S. The Combination of Environmental Education and Sustainable Development for Community Programs: A Case Study by IPÊ in Brazil. In Environmental Education: Identity, Politics and Citizenship; González-Gaudiano, E., Peters, M.A., Eds.; Sense: Rotterdam, The Netherlands, 2008; pp. 249–258. [Google Scholar]
- Campbell, C.; Robottom, I. What’s in a Name? Environmental Education and Education for Sustainable Development as Slogans. In Environmental Education: Identity, Politics and Citizenship; González-Gaudiano, E., Peters, M.A., Eds.; Sense: Rotterdam, The Netherlands, 2008; pp. 195–206. [Google Scholar]
- Agyeman, J. Teaching urban nature at key stage 2 in England: Looking at what is there, not at what ecologists say should be there. Environ. Educ. Res. 1998, 4, 139–154. [Google Scholar] [CrossRef]
- Timpson, W.M.; Dunbar, B.; Kimmel, G.; Bruyere, B.; Vewman, P.I.; Mizia, H. 147 Practical Tips for Teaching Sustainability: Connecting the Environment, the Economy, and Society; Atwood Publishing: Madison, WI, USA, 2006. [Google Scholar]
- Bosher, L.S. Hazards and the Built Environment: Attaining Built-In Resilience; Taylor and Francis: London, UK, 2008. [Google Scholar]
- Consortium for Energy Efficiency (CEE), Education for Sustainable Development in the Schools Sector: A Report to DfEE/QCA from the Panel for Education for Sustainable Development (Reading, Council for Environmental Education); CEE: Boston, MA, USA, 1998.
- Cortese, A. Higher Education and Sustainability. In 147 Practical Tips for Teaching Sustainability: Connecting the Environment, the Economy, and Society; Timpson, W.M., Dunbar, B., Kimmel, G., Bruyere, B., Vewman, P.I., Mizia, H., Eds.; Atwood Publishing: Madison, WI, USA, 2006; p. 5. [Google Scholar]
- Høyer, K.G.; Naess, P. Interdisciplinarity, ecology and scientific theory: The case of sustainable urban development. J. Crit. Realism 2008, 7, 179–207. [Google Scholar]
- Evans, R.; Marvin, S. Researching the sustainable city: Three modes of interdisciplinarity. Environ. Plan.A 2006, 38, 1009–1028. [Google Scholar] [CrossRef]
- Watson, P.; Wienand, N.; Workman, G. Teaching sustainability: A valid methodology for addressing the associated problematic issues. World Acad. Sci. Eng. Technol. 2009, 29, pp. 902–906. Available online: http://www.waset.org/journals/waset/v29/v29-148.pdf (accessed on 15 April 2009).
- Batty, M. Complexity in City Systems: Understanding, Evolution, and Design; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Marc, B.; de Roo, G. What Can Spatial Planning Learn from Ecological Management? Exploring Potentials of Panarchy for Spatial Management. In Book of Abstracts: 24th AESOP Annual Conference; Aalto University: Aalto, Finland, 2010; pp. 93–94. [Google Scholar]
- McGlade, J.; Garnsy, E. The Nature of Complexity. In Complexity and Co-Evolution; Garnsey, E., McGlade, J., Eds.; Edward Elgar: Northampton, MA, USA, 2006; pp. 1–21. [Google Scholar]
- Reece, I.; Walker, S. Teaching, Training and Learning, 5th ed; Business Education Publishers Limited: Sunderland, UK, 2003. [Google Scholar]
- McDermott, R.P.J.; Lynda, M.H.; Alan Strong, W. Reflections on trailing two teaching strategies for sustainability management education in an undergraduate engineering module. Proceeding of 3rd International Symposium for Engineering Education, University College Cork, Ireland, 1–2 July 2010; Available online: http://www.ucc.ie/ucc/depts/foodeng/isee2010/pdfs/Papers/McDermott%20et%20al.pdf (accessed on 11 August 2012).
- Dobson, H.E.; Bland Tomkinson, C. Creating sustainable development change agents through problem-based learning: Designing appropriate student PBL projects. Int. J. Sustain. High. Educ. 2012, 13, 263–278. [Google Scholar] [CrossRef]
- Mirfenderesk, H.; Crokill, D. The need for adaptive strategic planning sustainable management of risks associated with climate change. Int. J. Clim. Change Strateg. Manag. 2009, 1, 146–159. [Google Scholar] [CrossRef]
- Jabareen, Y. Building conceptual framework: Philosophy, definitions and procedure. Int. J. Qual. Methods 2009, 8, 49–62. [Google Scholar]
- Deleuze, G.; Guattari, F. What is Philosophy? Columbia University Press: New York, NY, USA, 1991. [Google Scholar]
- Mark, B.; Protevi, J. Deleuzeand Geophilosophy: A Guide and Glossary; Edinburgh University Press: Edinburgh, UK, 2004. [Google Scholar]
- Jabareen, Y. A new conceptual framework for sustainable development. Environ. Dev. Sustain. 2008, 10, 197–192. [Google Scholar]
- Agyeman, J. Sustainable Communities and the Challenge of Environmental Justice; New York University Press: New York, NY, USA, 2005. [Google Scholar]
- Agyeman, J.; Bullard, R.D.; Evans, B. Exploring the nexus: Bringing together sustainability, environmental justice and equity. Space Polity 2002, 6, 77–90. [Google Scholar] [CrossRef]
- Boyce, J.K.; Klemer, A.R.; Templet, P.H.; Willis, C.E. Power distribution, the environment, and public health: A state-level analysis. Ecol. Econ. 1999, 29, 127–140. [Google Scholar] [CrossRef]
- Solow, R.M. Sustainability: An Economist’s Perspective; Woods Hole Oceanographic Institution: Woods Hole, MA, USA, 1991; The Eighteenth J. Seward Johnson Lecture. [Google Scholar]
- Stymne, S.; Jackson, T. Intra-generational equity and sustainable welfare: A time series analysis for the UK and Sweden. Ecol. Econ. 2000, 33, 219–236. [Google Scholar] [CrossRef]
- Adger, W.N.; Agrawala, S.; Mirza, M.M.Q.; Conde, C.; O’Brien, K.; Pulhin, J.; Pulwarty, R.; Smit, B.; Takahashi, K. Assessment of Adaptation Practices, Options, Constraints and Capacity. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution ofWorking Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 717–743. [Google Scholar]
- O’Brien, K.; Leichenko, R.; Kelkar, U.; Venema, H.; Aandahl, G.; Tompkins, H.; Javed, A.; Bhadwal, S.; Barg, S.; Nygaard, L.; West, J. Mapping vulnerability to multiple stressors: Climate change and globalization in India. Glob. Environ. Change 2004, 14, 303–313. [Google Scholar] [CrossRef]
- Jouni, P.; Adger, W.N. Fair adaptation to climate change. Ecol. Econ. 2006, 56, 594–609. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC), Schneider, S.H.; Semenov, S.; Patwardhan, A.; Burton, I.; Magadza, C.H.D.; Oppenheimer, M.; Pittock, A.B.; Rahman, A.; Smith, J.B.; Suarez, A.; Yamin, F. Assessing Key Vulnerabilities and the Risk from Climate Change. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 779–810. [Google Scholar]
- De Geus, M. Ecological Utopias: Envisioning the Sustainable Society; International Books: Utrecht, The Netherlands, 1999. [Google Scholar]
- Benford Robert, D.; Snow David, A. Framing processes and social movements: An overview and assessment. Annu. Rev. Sociol. 2000, 26, 611–639. [Google Scholar] [CrossRef]
- Neal, P.; Palmer, J. Handbook of Environmental Education; Routledge: New York, NY, USA, 1994. [Google Scholar]
- Committee on Climate Change Adaptation (CCC). How well prepared is the UK for climate Change? 2010. Available online: http://www.theccc.org.uk (accessed on 8 August 2010).
- Abbott, J. Planning for complex metropolitan regions: A better future or a more certain one? J. Plan. Educ. Res. 2009, 28, 503–517. [Google Scholar] [CrossRef]
- Adger, W.N. Scales of governance and environmental justice for adaptation and mitigation of climate change. J. Int. Dev. 2001, 13, 921–931. [Google Scholar] [CrossRef]
- Heltberg, R.; Siegel, P.B.; Steen, L.J. Addressing human vulnerability to climate change: Toward a ‘no-regrets’ approach. Glob. Environ. Change 2009, 19, 89–99. [Google Scholar] [CrossRef]
- United Nations Development Programme (UNDP), Human Development Report 2002: Deepening Democracy in a Fragmented World; Oxford University Press: New York, NY, USA, 2002.
- United Nations Framework Convention on Climate Change (UNFCCC). Climate Change: Impacts, Vulnerability and Adaptation in Developing Countries. Available online: http://unfccc.int (accessed on 11 August 2007).
- Stern, N. The Stern Review on the Economics of Climate Change; Cambridge University Press: HM Treasury, UK, 2006. [Google Scholar]
- Alberti, M.; Derek, B.; Kristina, H.; Bekkah, C.; Christina, A.; Stefan, C.; Daniele, S. The impacts of urban patterns on aquatic ecosystems: An empirical analysis in Puget Lowland Sub-Basins. Landsc. Urban Plann. 2007, 80, 345–361. [Google Scholar] [CrossRef]
- Pearce, D.; Barbier, E.; Markandya, A. Sustainable Development: Economics and Environment in the Third World; Earthscan Publications: London, UK, 1990; p. 1. [Google Scholar]
- The Commission of the European Communities (CEC), White Paper: Adapting to Climate Change: Towards a European Framework for Action; CEC: Brussels, Belgium, 2009.
- Bulkeley, H.; Newell, P. Governing Climate Change; Routledge: London, UK, 2010. [Google Scholar]
- Johnson, J. Buying a sustainable economy: The record recovery act energy spending may trigger a new clean-energy industry. Chem. Eng. News 2009, 87, 17–22. [Google Scholar] [CrossRef]
- Beatley, T.; Manning, K. The Ecology of Place: Planning for Environment, Economy and Community; Island Press: Washington, DC, USA, 1998. [Google Scholar]
- Jabareen, Y. Sustainable urban forms: Their typologies, models, and concepts. J. Plan. Educ. Res. 2006, 26, 38–52. [Google Scholar] [CrossRef]
- Wheeler, S.M. Constructing sustainable development/safeguarding our common future: Rethinnking sustainable development. J. Am. Plan. Assoc. 2002, 68, 110–111. [Google Scholar]
- United States Environmental Protection Agency (EPA). Our Built and Natural Environments: A Technical Review of the Interactions between Land Use, Transportation, and Rnvironmental Quality; EPA 231-R-01-002; EPA: Washington, DC, USA. Available online: http://www.smartgrowth.org (accessed on 3 September 2001).
- Elkin, T.; McLaren, D.; Hillman, M. Reviving the City: Towards Sustainable Urban Development; Friends of the Earth: London, UK, 1991. [Google Scholar]
- Jabareen, Y. Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk. Cities 2012. forthcoming. [Google Scholar]
- Jenks, M. The Acceptability of Urban Intensification. In Achieving Sustainable Urban Form; Williams, K., Burton, E., Jenks, M., Eds.; London: E & FN SPON: London, UK, 2000. [Google Scholar]
- Cervero, R. Coping with Complexity in America’s Urban Transport Sector. In Proceeding ofThe 2nd International Conference on the Future of Urban Transport, Göteborg, Sweden, 22–24 September 2003.
- Le Clercq, F.; Bertolini, L. Achieving sustainable accessibility: An evaluation of policy measures in the Amsterdam area. Built Environ. 2003, 29, 36–47. [Google Scholar] [CrossRef]
- Walker, L.; Rees, W. Urban Density and Ecological Footprints—An Analysis of Canadian households. In Eco-City Dimensions: Healthy Communities, Healthy Planet; Roseland, M., Ed.; New Society Publishers: Gabriola Island, BC, Canada, 1997. [Google Scholar]
- Duncan, B.; Hartman, J. Sustainable Urban Transportation Initiatives in Canada. In Paper submitted to the APEC Forum on Urban Transportation, Seoul, Korea, 20–22 November 1996.
- Newman, P.; Kenworthy, J. Gasoline consumption and cities: A comparison of U.S. cities with a global survey. J. Am. Plan. Assoc. 1989, 55, 23–37. [Google Scholar]
- Turner, S.R.S.; Murray, M.S. Managing growth in a climate of urban diversity: South Florida’s Eastward ho! Initiative. J. Plan. Educ. Res. 2001, 20, 308–328. [Google Scholar] [CrossRef]
- Owens, S. Energy, Environmental Sustainability and Land-Use Planning. In Sustainable Development and Urban Form; Breheny, M., Ed.; Pion: London, UK, 1992; pp. 79–105. [Google Scholar]
- Thomas, R. Building Design. In Sustainable Urban Design: An Environmental Approach; Thomas, R., Fordham, M., Eds.; Spon Press: London, UK, 2003; pp. 46–88. [Google Scholar]
- Jacobs, J. The Death and Life of Great American Cities; Vintage Books: New York, NY, USA, 1961. [Google Scholar]
- Forman, R.T. The Missing Catalyst: Design and Planning with Ecology. In Ecology and Design: Frameworks for Learning; Johnson Bart, T., Hill, K., Eds.; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Carys, S.; Dunnett, N.; Woolley, H. Nature, role and value of green space in towns and cities: An overview. Built Environ. 2003, 29, 94–106. [Google Scholar] [CrossRef]
- Yanns, S. Living with the City: Urban Design and Environmental Sustainability. In Environmantly Friendly Cities; Eduardo, M., Yannas, S., Eds.; James & James: London, UK, 1998; pp. 41–48. [Google Scholar]
- Ulrich, R.S. Effects of Gardens on Health Outcomes: Theory and Research. In Healing Gardens: Therapeutic Benefits and Design Recommendations; Clare Cooper, M., Barnes, M., Eds.; Whiley: New York, NY, USA, 1999. [Google Scholar]
- Beer, A.; Delshammar, T.; Schildwacht, P. A changing understanding of the role of greenspace in high-density housing: A European perspective. Built Environ. 2003, 29, 132–143. [Google Scholar] [CrossRef]
- Dumreicher, H.; Levine, R.S.; Yanarella, E.J. The Appropriate Scale for “Low Energy”: Theory and Practice at the Westbahnhof. In Architecture, City, Environment. Proceedings of PLEA 2000; Steemers, K., Simos, Y., Eds.; James & James: London, UK, 2000; pp. 359–363. [Google Scholar]
- Orr, D.K. All Hands on Deck: Teaching Sustainability. In 147 Practical Tips for Teaching Sustainability: Connecting the Environment, the Economy, and Society; Timpson, W.M., Dunbar, B., Kimmel, G., Bruyere, B., Vewman, P.I., Mizia, H., Eds.; Atwood Publishing: Madison, WI, USA, 2006. [Google Scholar]
- Adams, R.; McCullough, A. The urban practitioner and participation in research within a streetwork context. Commun. Work Fam. 2003, 6, 269–288. [Google Scholar] [CrossRef]
- Reason, P.; Bradbury, H. Introduction: Inquiry and Participation in Search of a world Worthy of Human Aspiration. In Handbook of Action Research: Participative Inquiry and Practice; Reason, P., Bradbury, H., Eds.; Sage: London, UK, 2001. [Google Scholar]
- Kagan, C.; Burton, M.; Siddiquee, A. Action Research. The SAGE Handbook of Qualitative Research in Psychology; Willig, C., Stainton-Rogers, W., Eds.; Sage: London, UK, 2008. Available online: http://www.homepages.poptel.org.uk/mark.burton/actionresearchchapter%20v3%20full.pdf (accessed on 11August 2008).
- Jabareen, Y. Teaching Sustainability: A Multidisciplinary Approach. Creativ. Educ. 2011, 2, 388–392. [Google Scholar] [CrossRef]
- Jabareen, Y. Vulnerability of cities to extreme space weather events: A new frontier of a multidisciplinary urban research. Natural Science 2012, 4, 368–371. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Jabareen, Y. Towards a Sustainability Education Framework: Challenges, Concepts and Strategies—The Contribution from Urban Planning Perspectives. Sustainability 2012, 4, 2247-2269. https://doi.org/10.3390/su4092247
Jabareen Y. Towards a Sustainability Education Framework: Challenges, Concepts and Strategies—The Contribution from Urban Planning Perspectives. Sustainability. 2012; 4(9):2247-2269. https://doi.org/10.3390/su4092247
Chicago/Turabian StyleJabareen, Yosef. 2012. "Towards a Sustainability Education Framework: Challenges, Concepts and Strategies—The Contribution from Urban Planning Perspectives" Sustainability 4, no. 9: 2247-2269. https://doi.org/10.3390/su4092247
APA StyleJabareen, Y. (2012). Towards a Sustainability Education Framework: Challenges, Concepts and Strategies—The Contribution from Urban Planning Perspectives. Sustainability, 4(9), 2247-2269. https://doi.org/10.3390/su4092247