Effect of Powdered Activated Carbon to Reduce Fouling in Membrane Bioreactors: A Sustainable Solution. Case Study
Abstract
:1. Introduction
Author | Wastewater | PAC type | Dosage (g·L−1) | Flux reduction or other benefit |
---|---|---|---|---|
[13] | High strength wastewater from an alcohol distillery | Commercial (steam activated wood charcoal) | 2.0 | PAC addition allowed continuous operation at a constant flux for 20 d without filter change or cleaning. This duration was shorter (8 d) without PAC addition. |
[13] | Sugarcane molasses based distillery wastewater (spentwash) | 2.0 | ||
[14] | Municipal secondary effluent from a traditional active sludge process | Generic | 0.75 | Sustainable operating time was extended by up to 2 times through PAC addition, reducing membrane fouling. |
[15] | Synthetic wastewater | Generic | 1.20 | Effective flux reduction control was accomplished by adding PAC. The near-critical flux for the PAC system could be raised by about 32%. Operating intervals could be extended about 1.8 times. |
[16] | Various | SA Super Picahydro LP27 (Norit) | 5.0 | Different and interesting results |
2. Materials and Methods
Parameter | January | July | ||
---|---|---|---|---|
inlet | outlet | inlet | outlet | |
Inflow (m3·d−1) | 30,000 | - | 28,000 | - |
COD (mg·L−1) | 105 | 21 | 153 | 17 |
BOD5 (mg·L−1) | 49 | 6.4 | 48 | 4.6 |
N-NO3 (mg·L−1) | 1.9 | 6.7 | 4.9 | 4.9 |
N-NH4 (mg·L−1) | 14.9 | 0.50 | 14.6 | 0.25 |
TKN (mg·L−1) | 17.50 | 1.59 | 19.45 | 1.77 |
Total phosphorus (mg·L−1) | 2.90 | 0.48 | 3.20 | 0.29 |
Parameter | Unit | Value |
---|---|---|
Reactor volume | L | 50 |
Hydraulic retention time, HRT | h | 10 |
Solid retention time, SRT | d | 50 |
Mixed liquor suspended solids, MLSS | mg·L−1 | 4 |
Average temperature | °C | 12 (January) and 22 (July) |
Parameter | Unit | Value |
---|---|---|
Membranes type and module model | - | Tubular inorganic membrane porous carbon support (Dow FILMTECTM) |
Frame support material | - | AISI 304 |
Internal diameter | mm | 6 |
External diameter | mm | 10 |
Membrane pores size | µm | 0.05 |
Trans-membrane pressure, TMP | bar | 0.8 |
Range of working temperature | °C | 10–40 |
Max backwashing TMP | bar | 1.1 |
Backwashing period | min | 30 (duration: 30 s) |
Parameter | Unit | Value |
---|---|---|
Brunauer-Emmett-Teller (BET) surface area | m2·g−1 | 600–800 |
Iodine number | mg·g−1 | 760 |
Humidity | % | 15.6 |
Density | kg·m−3 | 400 |
Granulometry (refusal on a sieve with a 20 μm diameter) | % | 85 |
Current cost | €·t−1 | 1,230–1,550 |
3. Results and Discussion
4. Conclusions
Conflict of Interest
References
- Davies, W.J.; Le, M.S.; Health, C.R. Intensified activated sludge process with submerged membrane microfiltration. Water Sci. Technol. 1998, 38, 421–428. [Google Scholar] [CrossRef]
- Zhou, H.; Smith, D.W. Advanced treatment technologies in water and wastewater treatment. Can. J. Civil Eng. 2001, 28, 49–66. [Google Scholar] [CrossRef]
- Judd, S. The MBR Book. Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Choi, J.H.; Yong, N.G. Effect of membrane type and material on performance of a submerged membrane bioreactor. Chemosphere 2008, 71, 853–859. [Google Scholar] [CrossRef]
- Remy, M.; Van der Marel, P.; Zwjnenburg, A.; Rulkens, W.; Temmink, H. Low dose powdered activated carbon addition at high sludge retention times to reduce fouling in membrane bioreactors. Water Res. 2009, 43, 345–350. [Google Scholar] [CrossRef]
- Remy, M.; Potier, V.; Temmink, H.; Rulkensb, W. Why low powdered activated carbon addition reduces membrane fouling in MBRs. Water Res. 2010, 44, 861–867. [Google Scholar] [CrossRef]
- Remy, M.; Temmink, H.; Rulkens, W. Effect of low dosages of powdered activated carbon on membrane bioreactor performance. Water Sci. Technol. 2012, 65, 954–961. [Google Scholar] [CrossRef]
- Bai, R.B.; Leow, H.F. Microfiltration of activated sludge wastewater—The effect of system operation parameters. Sep. Purif. Technol. 2002, 29, 189–198. [Google Scholar] [CrossRef]
- Lyko, S.; Wintgens, T.; Al-Halbouni, D.; Baumgarten, S.; Tacke, D.; Drensia, K.; Janot, A.; Dott, W.; Pinnekamp, J.; Melin, T. Long-term monitoring of a full scale municipal membrane bioreactor—Characterization of foulant and operational performance. J. Membrane Sci. 2008, 317, 78–87. [Google Scholar] [CrossRef]
- Pirbazari, M.; Ravindram, V.; Badriyha, B.N.; Kim, S.H. Hybrid membrane filtration process for leachate treatment. Water Res. 1996, 30, 2691–2706. [Google Scholar] [CrossRef]
- Ying, Z.; Ping, G. Effect of powdered activated carbon dosage on retarding membrane fouling in MBR. Sep. Purif. Technol. 2006, 52, 154–160. [Google Scholar] [CrossRef]
- Satyawali, Y.; Balakrishnan, M. Effect of PAC addition on sludge properties in an MBR treating high strength wastewater. Water Res. 2009, 43, 1577–1588. [Google Scholar] [CrossRef]
- Satyawali, Y.; Balakrishnan, M. Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent. J. Hazard Mater. 2009, 170, 457–465. [Google Scholar] [CrossRef]
- Lin, H.; Wang, F.; Ding, L.; Hong, H.; Chen, J.; Lu, X. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment. J. Hazard. Mater. 2011, 192, 1509–1514. [Google Scholar] [CrossRef]
- Li, X.; Gao, F.; Hua, Z.; Du, G.; Chen, J. Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling. Sep. Purif. Technol. 2005, 46, 19–25. [Google Scholar] [CrossRef]
- Iversen, V.; Mehrez, R.; Horng, R.Y.; Chen, C.H.; Meng, F.; Drews, A.; Lesjean, B.; Ernst, M.; Jekel, M.; Kraume, M. Fouling mitigation through flocculants and adsorbents attion in membrane bioreactors: Comparing lab and pilot studies. J. Membrane Sci. 2009, 345, 21–30. [Google Scholar] [CrossRef]
- Park, H.; Choo, K.-H.; Lee, C.-H. Flux enhancement with powdered activated carbon addition in the membrane anaerobic bioreactor. Sep. Sci. Technol. 1999, 34, 2781–2792. [Google Scholar] [CrossRef]
- Fang, H.H.P.; Shi, X.; Zhang, T. Effect of activated carbon on fouling of activated sludge filtration. Desalination 2006, 189, 193–199. [Google Scholar] [CrossRef]
- Ng, C.A.; Sun, D.; Fane, A.G. Operation of membrane bioreactor with powdered activated carbon addition. Sep. Sci. Technol. 2008, 41, 1447–1466. [Google Scholar]
- Hu, Y.; Stuckey, D.C. Activated carbon addition to a submerged anaerobic membrane bioreactor: effect on performance, transmembrane pressure, and flux. J. Environ. Eng. 2007, 133, 73–80. [Google Scholar] [CrossRef]
- Li, Y.Z.; He, Y.L.; Liu, Y.H.; Yang, S.C.; Zhang, G.J. Comparison of the filtration characteristics between biological powdered activated carbon sludge and activated sludge in submerged membrane bioreactors. Desalination 2005, 174, 305–314. [Google Scholar] [CrossRef]
- Fan, F.; Zhou, H.; Husain, H. Identification of wastewater sludge characteristics to predict critical flux for membrane bioreactor processes. Water Res. 2006, 40, 205–212. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Yin, X.; Tian, L. Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization. J. Membrane Sci. 2008, 325, 238–244. [Google Scholar] [CrossRef]
- Di Mauro, C.; Bouchon, S.; Torretta, V. Industrial risk in the Lombardy Region (Italy): What people perceive and what are the gaps to improve the risk communication and the partecipatory processes. Chem. Eng. Trans. 2012, 26, 297–302. [Google Scholar]
- Torretta, V. PAHs in wastewater: Removal efficiency in a conventional wastewater treatment plant and comparison with model predictions. Environ. Technol. 2012, 33, 851–855. [Google Scholar] [CrossRef] [Green Version]
- Torretta, V.; Katsoyiannis, A. Occurrence of polycyclic aromatic hydrocarbons in sludges from different stages of a wastewater treatment plant in Italy. Environ. Technol. 2012. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Torretta, V.; Urbini, G.; Raboni, M.; Copelli, S.; Viotti, P.; Luciano, A.; Mancini, G. Effect of Powdered Activated Carbon to Reduce Fouling in Membrane Bioreactors: A Sustainable Solution. Case Study. Sustainability 2013, 5, 1501-1509. https://doi.org/10.3390/su5041501
Torretta V, Urbini G, Raboni M, Copelli S, Viotti P, Luciano A, Mancini G. Effect of Powdered Activated Carbon to Reduce Fouling in Membrane Bioreactors: A Sustainable Solution. Case Study. Sustainability. 2013; 5(4):1501-1509. https://doi.org/10.3390/su5041501
Chicago/Turabian StyleTorretta, Vincenzo, Giordano Urbini, Massimo Raboni, Sabrina Copelli, Paolo Viotti, Antonella Luciano, and Giuseppe Mancini. 2013. "Effect of Powdered Activated Carbon to Reduce Fouling in Membrane Bioreactors: A Sustainable Solution. Case Study" Sustainability 5, no. 4: 1501-1509. https://doi.org/10.3390/su5041501
APA StyleTorretta, V., Urbini, G., Raboni, M., Copelli, S., Viotti, P., Luciano, A., & Mancini, G. (2013). Effect of Powdered Activated Carbon to Reduce Fouling in Membrane Bioreactors: A Sustainable Solution. Case Study. Sustainability, 5(4), 1501-1509. https://doi.org/10.3390/su5041501