Effects of Reduced Tillage on Crop Yield, Plant Available Nutrients and Soil Organic Matter in a 12-Year Long-Term Trial under Organic Management
Abstract
:1. Introduction
2. Experimental Section
2.1. Field Experiment
Crop | Year | Fertilisation with composted sheep manure (t ha−1 dry matter) |
---|---|---|
Spelt (Triticum aestivum subsp. spelta) | 2000 | |
Potatoes (Solanum tuberosum) | 2001 | 24 |
Triticale (xTriticosecale Wittmack) | 2002 | |
Grass/clover mix (Trifolium pratense, T. repens, Medicago sativa, Lolium perenne, Phleum pratense, Festuca pratense and others) | 2003 | |
Grass/clover (see above) | 2004 | |
Winter wheat (Triticum aestivum) | 2005 | 18 |
Oat (Avena sativa) | 2006 | |
Faba bean (Vicia faba) | 2007 | |
Spelt (T. aestivum subsp. spelta) | 2008 | |
Maize (Zea mays) | 2009 | 24 |
Triticale (xTriticosecale Wittmack) | 2010 | |
Grass/clover (undersown in 2010), see above | 2011 | |
Grass/clover (see above) | 2012 |
2.2. Soil Sampling
2.3. Chemical and Physical Soil Analyses
2.4. Yield
2.5. Humus Budget
Crop, organic manure | Standard yield t ha−1 * | Humus reproduction (“humus-carbon” kg C ha−1 yr−1) |
---|---|---|
Winter wheat, triticale | 6 | −280 |
Oat, spelt | 5 | −280 |
Potatoes | 30 | −760 |
Silage maize | 14 | −560 |
Faba beans | 3 | 160 |
Cover crop (non-legume) | No data | 80 |
Grass/clover undersown | No data | 200 |
Grass/clover main crop | No data | 600 |
Manure compost (55% dry matter) | See Table 1 | 96 kg humus-C per t substrate |
2.6. Statistics
3. Results and Discussion
3.1. Soil Parameters
Mean | Sd | Min | Max | |
---|---|---|---|---|
Soil Depth 0–20 cm | ||||
Variable | ||||
Kavail mg kg−1 | 113 | 21 | 73 | 164 |
Pavail mg kg−1 | 57 | 24 | 35 | 137 |
pH | 6.3 | 0.2 | 6.1 | 6.7 |
Canorg% | 0.05 | 0.03 | 0.02 | 0.14 |
Corg g kg−1 | 13.7 | 2.2 | 9.1 | 17.9 |
Nt g kg−1 | 1.49 | 0.2 | 1.03 | 1.86 |
C:N ratio | 9 | 1 | 8 | 10 |
Soil Depth 20–40 cm | ||||
Variable | ||||
Kavail mg kg−1 | 74 | 18 | 41 | 121 |
Pavail mg kg−1 | 50 | 28 | 20 | 134 |
pH | 6.4 | 0.3 | 6.0 | 7.1 |
Canorg% | 0.04 | 0.03 | 0.02 | 0.16 |
Corg g kg−1 | 9.9 | 2.0 | 6.4 | 15.3 |
Nt g kg−1 | 1.12 | 0.20 | 0.79 | 1.49 |
C:N ratio | 9 | 1 | 8 | 11 |
Soil Depth 40–60 cm | ||||
Variable | ||||
Kavail mg kg−1 | 48 | 12 | 33 | 82 |
Pavail mg kg−1 | 34 | 33 | 6 | 176 |
pH | 6.4 | 0.4 | 5.5 | 7.3 |
Canorg% | 0.07 | 0.08 | 0.02 | 0.35 |
Corg g kg−1 | 4.3 | 1.3 | 2.3 | 8.4 |
Nt g kg−1 | 0.55 | 0.12 | 0.34 | 0.89 |
C:N ratio | 9 | 2 | 6 | 18 |
Corg | Plant available P | Plant available K | pH | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Effect | DF | F-value | Pr > t | DF | F-value | Pr > t | DF | F-value | Pr > t | DF | F-value | Pr > t |
Depth (D) | 2 | 567.40 | <0.001 | 2 | 70.21 | <0.001 | 2 | 552.49 | <0.001 | 2 | 3.09 | 0.0616 |
Primary tillage (P) | 3 | 5.76 | 0.0130 | 3 | 0.28 | 0.8386 | 3 | 0.55 | 0.6570 | 3 | 0.34 | 0.7959 |
Stubble tillage (S) | ns | ns | ns | ns | ||||||||
P × S | ns | ns | ns | ns | ||||||||
P × D | 6 | 9.43 | <0.001 | 6 | 1.36 | 0.0662 | 6 | 11.47 | <0.001 | 6 | 2.02 | 0.0901 |
S × D | ns | ns | ns | ns | ||||||||
P × S × D | ns | ns | ns | ns |
3.2. Yield and Humus Budget
Effect | DF | F-value | Pr > t |
---|---|---|---|
Year (Y) | 7 | 248.59 | <0.0001 |
Primary tillage (P) | 3 | 23.93 | <0.0001 |
Stubble tillage (S) | 1 | 19.88 | <0.0001 |
P × S | 3 | 12.51 | <0.0001 |
P × Y | 21 | 2.82 | 0.0003 |
S × Y | 7 | 1.64 | 0.1372 |
P × S × Y | 21 | 1.33 | 0.1720 |
Year | Crop | Yield (t DM) |
---|---|---|
2000 | Spelt | Not available |
2001 | Potatoes | Not available |
2002 | Triticale | 4.5 |
2003 | Grass/clover | 4.7 |
2004 | Grass/clover | Not available |
2005* | Winter wheat (WW) | 4.6 (0.30) |
2006 | Oat (OA) | 4.2 (0.56) |
2007 | Faba bean (FB) | 1.3 (0.28) |
2008 | Spelt (SPE) | 2.4 (0.15) |
2009 | Silage maize (SM) | 16.8 (2.32) |
2010 | Triticale (TRI) | 3.4 (0.30) |
2011 | Grass/clover (GC) | 12.5 (1.23) |
2012 | Grass/clover (GC) | 10.1 (0.97) |
4. Conclusions
Acknowledgements
Conflicts of Interest
References
- Aziz, I.; Mahmood, T.; Islam, K.R. Effect of long term no-till and conventional tillage practices on soil quality. Soil Tillage Res. 2013, 131, 28–35. [Google Scholar] [CrossRef]
- Lal, R. Enhancing ecosystem services with no-till. Renew. Agric. Food Syst. 2013, 28, 102–114. [Google Scholar] [CrossRef]
- Triplett, G.B.; Dick, W.A. No-tillage crop production: A revolution in agriculture! Agron. J. 2008, 100, S153–S165. [Google Scholar]
- Derpsch, R.; Friedrich, T.; Kassam, A.; Hongwen, L. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 2010, 3, 1–25. [Google Scholar] [CrossRef]
- Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, J. Carbon sequestration in the agricultural soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef]
- Dimassi, B.; Cohanb, P.; Labreuchb, J.; Marya, B. Changes in soil carbon and nitrogen following tillage conversion in along-term experiment in Northern France. Agric. Ecosyst. Environ. 2013, 169, 12–20. [Google Scholar] [CrossRef]
- Amado, T.J.C.; Bayer, C.; Conceição, P.C.; Spagnollo, E.; Costa de Campos, B.-H.; da Veiga, M. Potential of carbon accumulation in no-till soils with intensive use and cover crops in southern Brazil. J. Environ. Qual. 2006, 35, 1599–1607. [Google Scholar] [CrossRef]
- Govaerts, B.; Verhulst, N.; Castellanos-Navarrete, A.; Sayre, K.D.; Dixon, J.; Dendooven, L. Conservation agriculture and soil carbon sequestration: Between myth and famer reality. Crit. Rev. Plant Sci. 2009, 28, 97–122. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation: A global analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef]
- Baker, J.M.; Ochsner, T.E.; Venterea, R.T.; Griffis, T.J. Tillage and soil carbon sequestration—What do we really know? Agric. Ecosyst. Environ. 2007, 118, 1–5. [Google Scholar] [CrossRef]
- Watson, C.A.; Atkinson, D.; Gosling, P.; Jackson, L.R.; Rayns, F.W. Managing soil fertility in organic farming systems. Soil Use Manag. 2002, 18, 239–247. [Google Scholar] [CrossRef]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fließbach, A.; Buchmann, N.; Mäder, P.; Stolze, M.; Smith, P.; El-Hage Scialabba, N.; et al. Enhanced top-soil carbon stocks under organic farming. PNAS 2012, 109, 18226–18231. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts?–A meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental impacts of different agricultural management practices: Conventional vs. organic agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Gomiero, T.; Paoletti, M.G.; Pimentel, D. Energy and environmental issues in organic and conventional agriculture. Crit. Rev. Plant Sci. 2008, 27, 239–254. [Google Scholar] [CrossRef]
- Mondelaers, K.; Aertsens, J.; van Huylenbroeck, G. A meta-analysis of the differences in environmental impacts between organic and conventional farming. Br. Food J. 2009, 10, 1098–1119. [Google Scholar]
- Hülsbergen, K.-J. Kohlenstoffspeicherung in Böden durch Humusaufbau. In Klimawandel und Ökolandbau; KTBL, E.V., Ed.; KTBL-Tagung: Göttingen, Germany, 2008; pp. 7–22. [Google Scholar]
- Peigné, J.; Ball, B.C.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? A review. Soil Use Manag. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Légère, A.; Vanasse, A.; Stevenson, F.C. Low-input management and mature conservation tillage: Agronomic potential in a cool humid climate. Agron. J. 2013, 105, 745–754. [Google Scholar] [CrossRef]
- Pekrun, C.; Claupein, W. The effect of stubble tillage and primary tillage on population-dynamics of Canada thistle (Cirsium arvense) in organic farming. J. Plant Dis. Prot. 2004, XIX, 483–490. [Google Scholar]
- Gruber, S.; Claupein, W. Effect of tillage intensity on weed infestation in organic farming. Soil Tillage Res. 2009, 105, 104–111. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Ryan, M.R.; Curran, W.S.; Teasdale, J.R.; Maul, J.; Spargo, J.T.; Moyer, J.; Grantham, A.M.; Weber, D.; Way, T.R.; et al. Conservation tillage issues: Cover crop-based organic rotational no-till grain production in the mid-Atlantic region, USA. Renew. Agric. Food Syst. 2012, 27, 31–40. [Google Scholar] [CrossRef]
- Krauss, M.; Berner, A.; Burger, D.; Wiemken, A.; Niggli, U.; Mäder, P. Reduced tillage in temperate organic farming: Implication for crop management and forage production. Soil Use Manag. 2010, 26, 12–20. [Google Scholar] [CrossRef]
- VDLUFA, Methodenbuch. Band 1. Die Untersuchung von Böden; (in German). VDLUFA-Verlag: Darmstadt, Germany, 1991.
- SMUL. BEFU–Teil Ökologischer Landbau. Schriftenreihe des Landesamtes für Umwelt, Landwirtschaft und Geologie 2008, 36, 163–216. (in German).
- EC. Council Regulation (EC) No 73/2009 of 19 January 2009. Establishing common rules for direct support schemes for farmers under the common agricultural policy and establishing certain support schemes for farmers, amending Regulations (EC) No 1290/2005, (EC) No 247/2006, (EC) No 378/2007 and repealing Regulation (EC) No 1782/2003. Off. J. Eur. Union 2009, L30, 16–99.
- EC. Commission regulation (EC) No 1122/2009 of 30 November 2009 laying down detailed rules for the implementation of Council Regulation (EC) No 73/2009 as regards cross-compliance, modulation and the integrated administration and control system, under the direct support schemes for farmers provided for that Regulation, as well as for the implementation of Council Regulation (EC) No 1234/2007 as regards cross-compliance under the support scheme provided for the wine sector. Off. J. Eur. Union 2009, L316, 65–112.
- MLR. Humusbilanzierung–Beurteilung und Bemessung der Humusversorgung auf Ackerland. Merkblätter für die umweltgerechte Landbewirtschaftung 2010, 26. (in German).
- Patterson, H.D.; Thompson, R. Recovery of inter-block information when block sizes are unequal. Biometrika 1971, 58, 545–554. [Google Scholar] [CrossRef]
- Gosling, P.; Shepherd, M. Long-term changes in soil fertility in organic arable farming systems in England, with particular reference to phosphorus and potassium. Agric. Ecosyst. Environ. 2005, 105, 425–432. [Google Scholar] [CrossRef]
- Bell, L.W.; Sparling, B.; Tenuta, M.; Entz, M.H. Soil profile carbon and nutrient stocks under long-term conventional and organic crop and alfalfa-crop rotations and re-establishes grassland. Agric. Ecosyst. Environ. 2012, 158, 156–163. [Google Scholar] [CrossRef]
- Carpenter-Boggs, L.; Kennedy, A.C.; Reganold, J.P. Organic and biodynamic management: Effects on soil biology. Soil Sci. Soc. Am. J. 2000, 64, 1651–1659. [Google Scholar] [CrossRef]
- Gadermeier, F.; Berner, A.; Fließbach, A.; Friedel, J.K.; Mäder, P. Impact of reduced tillage on soil organic carbon and nutrient budgets under organic farming. Renew. Agric. Food Syst. 2011, 17, 68–80. [Google Scholar]
- Salvo, L.; Hernández, J.; Ernst, O. Distribution of soil organic carbon in different size fractions, under pasture and crop rotations with conventional tillage and no-till systems. Soil Tillage Res. 2010, 109, 116–122. [Google Scholar] [CrossRef]
- Berner, A.; Hildermann, I.; Fließbach, A.; Pfiffner, L.; Niggli, U.; Mäder, P. Crop yield and soil fertility response to reduced tillage under organic management. Soil Tillage Res. 2008, 101, 89–96. [Google Scholar] [CrossRef]
- Powlson, D.S.; Bhogal, A.; Chambers, B.J.; Coleman, K.; Macdonald, A.J. The potential to increase soil carbon stocks through reduced tillage or organic material additions on England and Wales: A case study. Agric. Ecosyst. Environ. 2012, 146, 23–33. [Google Scholar] [CrossRef]
- Piegholdt, C.; Geisseler, D.; Koch, H.-J.; Ludwig, B. Long-term tillage effects on the distribution of phosphorus fractions of loess soils in Germany. J. Plant Nutr. Soil Sci. 2013, 176, 217–226. [Google Scholar] [CrossRef]
- Lewis, D.B.; Kaye, J.P.; Jabbour, R.; Barbercheck, M.E. Labile carbon and other soil quality indicators in two tillage systems during transition to organic agriculture. Renew. Agric. Food Syst. 2011, 26, 342–353. [Google Scholar] [CrossRef]
- Wendt, J.W.; Hauser, S. An equivalent soil mass procedure for monitoring soil organic carbon in multiple soil layers. Eur. J. Soil Sci. 2013, 64, 58–65. [Google Scholar] [CrossRef]
- Emmerling, C. Reduced and conservation tillage effects on soil ecological properties in an organic farming system. Biol. Agric. Hortic. 2007, 24, 363–377. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, A.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knaber, M.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Lal, R. Sequestering carbon in soils of agro-ecosystems. Food Policy 2011, 36, S33–S39. [Google Scholar] [CrossRef]
- Gruber, S.; Pekrun, C.; Möhring, J.; Claupein, C. Long-term yield and weed response to conservation and stubble tillage in SW Germany. Soil Tillage Res. 2012, 121, 49–56. [Google Scholar] [CrossRef]
- Pekrun, C.; Claupein, W. The implication of stubble tillage for weed population dynamics in organic farming. Weed Res. 2006, 46, 414–423. [Google Scholar] [CrossRef]
- Wander, M.M.; Yun, W.; Goldstein, W.A.; Aref, A.; Khan, S.A. Organic N and particulate organic matter fractions in organic and conventional farming systems with a history of manure application. Plant Soil 2007, 291, 311–321. [Google Scholar] [CrossRef]
- D’Hose, T.; Cougnon, M.; de Vliegher, A.; van Bockstaele, E.; Reheul, D. Influence of farm compost on soil quality and crop yields. Arch. Agron. Soil Sci. 2012, 58 (Suppl. 1), S71–S75. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zikeli, S.; Gruber, S.; Teufel, C.-F.; Hartung, K.; Claupein, W. Effects of Reduced Tillage on Crop Yield, Plant Available Nutrients and Soil Organic Matter in a 12-Year Long-Term Trial under Organic Management. Sustainability 2013, 5, 3876-3894. https://doi.org/10.3390/su5093876
Zikeli S, Gruber S, Teufel C-F, Hartung K, Claupein W. Effects of Reduced Tillage on Crop Yield, Plant Available Nutrients and Soil Organic Matter in a 12-Year Long-Term Trial under Organic Management. Sustainability. 2013; 5(9):3876-3894. https://doi.org/10.3390/su5093876
Chicago/Turabian StyleZikeli, Sabine, Sabine Gruber, Claus-Felix Teufel, Karin Hartung, and Wilhelm Claupein. 2013. "Effects of Reduced Tillage on Crop Yield, Plant Available Nutrients and Soil Organic Matter in a 12-Year Long-Term Trial under Organic Management" Sustainability 5, no. 9: 3876-3894. https://doi.org/10.3390/su5093876
APA StyleZikeli, S., Gruber, S., Teufel, C. -F., Hartung, K., & Claupein, W. (2013). Effects of Reduced Tillage on Crop Yield, Plant Available Nutrients and Soil Organic Matter in a 12-Year Long-Term Trial under Organic Management. Sustainability, 5(9), 3876-3894. https://doi.org/10.3390/su5093876