Persea schiedeana: A High Oil “Cinderella Species” Fruit with Potential for Tropical Agroforestry Systems
Abstract
:1. Introduction
2. Experimental
2.1. Interviews
2.2. Fruit Morphology and Diversity
3. Results and Discussion
3.1. Tree/Fruit Data
Month | Phenological Stage |
---|---|
January–March: | Terminal bud-break and flowering, followed by flush of new foliage. |
February–March: | Dropping of old leaves, maturation of new leaves. |
May–August: | Fruiting |
August–December: | Second flush of foliage and sporadic re-flowering (reports of rare fruiting in February from this flowering) |
December–January: | Best time for grafting |
Note: | Rootstock can be generated from seed in June–July to grafting size in January. |
Age (n = 117) | Altitude (n = 118) | DBH (n = 124) | Height (n = 34) | |
---|---|---|---|---|
Overall Mean | 32.5 ± 22 | 733 m ± 235 | 50 cm ± 27 | 21 m ± 9 |
Maximum | 100 years | 1193 m | 153 cm | 45 m |
Minimum | 8 years | 255 m | 15 cm | 5 m |
Characteristic | ||||||
---|---|---|---|---|---|---|
Soil type (n = 120) | Abonoso/Organic: 29% | Negra/Black: 53% | Media/Medium: 1% | Amarilla/Yellow: 6% | Arenosa/Sandy: 7% | Segunda/Second: 5% |
Humidity of site (n = 123) | Driest: 0% | Dry: 7% | Medium: 39% | Humid: 47% | Hyper-humid: 7% | |
Light level of site (n = 116) | Shade: 21% | Sun: 79% |
Fruit Character: | ||||||
---|---|---|---|---|---|---|
Number of fruits | Average (Standard Deviation) | Min/Max | ||||
Fruit Length (cm) | 487 | 14 ± 3.6 | 8–28 | |||
Fruit Width (cm) | 485 | 6 ± −1 | 3–10 | |||
Fruit Weight (g) | 484 | 297 ± 112 | 90–1000 | |||
Pulp + Skin Weight (g) | 195 | 211 ± 75 | 80–440 | |||
Seed Length (cm) | 194 | 9 ± 2 | 3–17 | |||
Seed Width (cm) | 197 | 4 ± 1.3 | 2–13 | |||
Seed Weight (g) | 209 | 91 ± 43 | 30–240 | |||
Pulp + Skin: Seed Ratio | 192 | 2.6 ± 1.4 | 0.6–10 | |||
Qualitative fruit characters | ||||||
Fruit Form | 90 | Long neck: 20% | Pyriform: 45% | Ball: 12% | Pyriform w/neck: 21% | Cucumber: 2% |
Fruit Pulp Texture | 83 | Watery: 21% | Creamy: 77% | Floury: 2% | ||
Flavor | 83 | Best: 45% | Good: 24% | OK: 19% | Poor: 12% | Bad: 0% |
Fiber Content | 86 | None: 15% | Low: 51% | Medium: 21% | High: 12% | Extreme: 1% |
Subjective Quality | 83 | Best: 36% | Good: 36% | Average: 18% | Poor: 9% | Bad: 1% |
Planted vs. Self Sown | Planted | Self-Sown | Significance |
---|---|---|---|
Skin Color (n = 44,44) | LG:61.4%, DG:25.0% ,P:11.4%, R:2.3% | LG:84.1%, DG:15.9%, P:0.0%, R:0.0% | No data |
Pulp Texture (n = 37,40) | W: 20.5%,Cr: 77.1%,Fl: 2.4% | W: 24.3%, Cr: 73.0%,Fl: 2.7% | No data |
Flavor (n = 36,41) | 1.56 ± 0.135 | 2.44 ± 0.175 | 0 |
Fiber (n = 38,42) | 2.61 ± 0.139 | 2.07 ± 0.138 | 0.008 |
Quality (n = 37,41) | 1.68 ± 0.140 | 2.39 ± 0.160 | 0.001 |
Fruit Form (n = 58,24) | 1: 20.7%, 2: 43.1%, 3: 12.1%, 4: 22.4%, 5: 1.7% | 1: 20.8%, 2: 50.0%, 3: 16.7%, 4: 12.5%, 5: 0.0% | No data |
Fruit Length (n = 225,224) | 14.4 cm ± 0.2 | 13.7 cm ± 0.2 | 0.022 |
Fruit Width (n = 224,223) | 6.4 cm ± 0.07 | 6.1 cm ± 0.07 | 0.028 |
Fruit Weight (n = 226,220) | 313 g ± 8 | 280 g ± 7 | 0.002 |
Pulp/Skin Weight (n = 123,54) | 223 g ± 7 | 187 g ± 9 | 0.003 |
Seed Weight (n = 123,62) | 101 g ± 4 | 79 g ± 4 | 0.001 |
Pulp: Seed Ratio (n = 121,53) | 2.62 g ± 0.13 | 2.61 g ± 0.2 | 0.969 |
Best vs. Rest | Best:15.6%, Rest:84.4% | Best:8.0%, Rest:92.6% | No data |
3.2. Ethnoecology and Management
Selective Criteria (n = 31) | # of Times Listed | Percent of Informants to List |
---|---|---|
“Best”/“Mejor” (overall) | 18 | 58 |
Good flavor | 7 | 23 |
High pulp content | 6 | 19 |
Large fruit | 4 | 13 |
3.3. Traditional Knowledge of Phenology and Ecology
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Hammer, K.; Arrowsmith, N.; Gladis, T. Agrobiodiversity with emphasis on plant genetic resources. Naturwissenschaften 2003, 90, 241–250. [Google Scholar] [CrossRef]
- Burlingame, B.; Charrondiere, U.R.; Dernini, S.; Stadlmayr, B.; Mondovì, S. Food Biodiversity and Sustainable Diets: Implications of Applications for Food Production and Processing. In Green Technologies in Food Production and Processing; Boye, J.I., Arcand, Y., Eds.; Food Engineering Series, Springer: New York, NY, USA, 2012; pp. 643–657. [Google Scholar]
- Heywood, V.H. Ethnopharmacology, food production, nutrition and biodiversity conservation: towards a sustainable future for indigenous peoples. J. Ethnopharmacol. 2011, 137, 1–15. [Google Scholar] [CrossRef]
- Thrupp, L.A. Linking agricultural biodiversity and food security: The valuable role of agrobiodiversity for sustainable agriculture. Int. Aff. 2000, 76, 283–297. [Google Scholar]
- Frison, E.A.; Cherfas, J.; Hodgkin, T. Agricultural Biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 2011, 3, 238–253. [Google Scholar] [CrossRef]
- Hills, K.; Goldberger, J.; Jones, S. Commercial bakers and the relocalization of wheat in western Washington State. Agric. Hum. Values 2013, 30, 365–378. [Google Scholar] [CrossRef]
- Veteto, J. Seeds of Persistence. PH.D. Dissertation, University of Georgia, Athens, GA, USA, 2010. [Google Scholar]
- Petrini, C. Slow Food Revolution: A New Culture for Eating and Living; Rizzoli: New York, NY, USA, 2006. [Google Scholar]
- Nazarea, V.D. Cultural Memory and Biodiversity; University of Arizona Press: Tucson, AZ, USA, 2005. [Google Scholar]
- Padulosi, S.; Hodgkin, T.; Williams, J.T.; Haq, N. Underutilized Crops: Trends, Challenges and Opportunities in the 21st Century. In Managing Plant Genetic Diversity; Engels, J., Rao, V., Brown, A., Jackson, M., Eds.; CAB International: Wallingford, UK, 2002. [Google Scholar]
- Leakey, R.R.B.; Newton, A.C. Domestication of “Cinderella” Species as the Start of a Woody-Plant Revolution. In Tropical Trees: The Potential for Domestication and the Rebuilding of Forest Resources; Leakey, R.R.B., Newton, A.C., Eds.; HMSO: London, UK, 1993; pp. 3–7. [Google Scholar]
- Prance, G.T. Amazonian Tree Diversity and the Potential for Supply of Non-Timber Forest Products. In Tropical Trees: Potential for Domestication and the Rebuilding of Forest Resources; Leakey, R.R.B., Newton, A.C., Eds.; HMSO: London, UK, 1994; Volume 29, p. 7. [Google Scholar]
- Leakey, R.R.B.; Temu, A.B.; Melnyk, M.; Vantomme, P. Domestication and commercialization of non-timber forest products in agroforestry systems. Available online: http://www.fao.org/docrep/w3735e/w3735e00.HTM (assessed on 18 December 2013).
- Leakey, R.R.B.; Simons, A.J. The domestication and commercialization of indigenous trees in agroforestry for the alleviation of poverty. Agrofor. Syst. 1997, 38, 165–176. [Google Scholar] [CrossRef]
- Schreckenberg, K.; Awono, A.; Degrande, A.; Mbosso, C.; Ndoye, O.; Tchoundjeu, Z. Domesticating indigenous fruit trees as a contribution to poverty reduction. For. Trees Livel. 2006, 16, 35–51. [Google Scholar] [CrossRef]
- Leakey, R.R.B.; Akinnifesi, F.K. Towards a Domestication Strategy for Indigenous Fruit Trees in the Tropics. In Indigenous Fruit Trees in the Tropics: Domestication, Utilization and Commercialization; Akinnifesi, F.K., Leakey, R.R.B., Ajayi, O.C., Sileshi, G., Tchoundjeu, Z., Matakala, P., Kwesiga, F.R., Eds.; CAB International: Wallingford, UK, 2007; pp. 28–49. [Google Scholar]
- Simons, A.J.; Leakey, R.R.B. Tree domestication in tropical agroforestry. Agrofor. Syst. 2004, 62, 167–181. [Google Scholar] [CrossRef]
- Clement, C.R.; Cornelius, J.P.; Pinedo-Panduro, M.H.; Yuyama, K. Native Fruit Tree Improvement in Amazonia: An Overview. In Indigenous Fruit Trees in the Tropics: Domestication, Utilization and Commercialization; Akinnifesi, F.K., Leakey, R.R.B., Ajayi, O.C., Sileshi, G., Tchoundjeu, Z., Matakala, P., Kwesiga, F.R., Eds.; CAB International: Wallingford, UK, 2007; pp. 100–119. [Google Scholar]
- Zizumbo-Villarreal, D.; Flores-Silva, A.; Marín, P.C.-G. The Archaic diet in mesoamerica: Incentive for milpa development and species domestication. Econ. Bot. 2012, 66, 328–343. [Google Scholar] [CrossRef]
- Bost, J. Edible Plants of the Chinantla, Oaxaca, Mexico with an Emphasis on the Participatory Domestication Prospects of Persea Schiedeana. Master Thesis, University of Florida, Gainesville, FL, USA, 2009. [Google Scholar]
- De la Medina, C.J.S.; Castillo, C.J.G.; Martínez, J.M.; del Coronel, Ó.Á. Distribución ecogeográfica y características del fruto de persea schiedeana nees. en los Tuxtlas, Veracruz, México. Rev. Fitotec. Mex. 2007, 30, 403–410. (in Spanish). [Google Scholar]
- Smith, N.J.H.; Williams, J.T.; Plucknett, D.; Talbott, J. Tropical Forests and Their Crops; Comstock Pub. Associates: Ithaca, NY, USA, 1992. [Google Scholar]
- Popenoe, W. Manual of Tropical and Subtropical Fruits Excluding the Banana, Coconut, Pineapple, Citrus Fruits, Olive, and Fig; Macmillan Co.: New York, NY, USA, 1924. [Google Scholar]
- Castillo, C.J.G.; del Coronel, A.O.A.; de la Medina, C.J.; Martínez, J.M.C. Características morfológicas y bioquímicas de frutos de chinene (Persea schiedeana Nees.). Rev. Chapingo Ser. Hortic. 2007, 13, 141–147. (in Spanish). [Google Scholar]
- Litz, R.E. Biotechnology of Fruit and Nut Crops; CABI: Cambridge, MA, USA, 2005. [Google Scholar]
- Lahav, E.; Lavi, U. Genetics and Classical Breeding. In The Avocado: Botany, Production and Uses; Whiley, A., Schaffer, B., Wolstenholme, B., Eds.; CAB International: Wallingford, UK, 2002; pp. 39–69. [Google Scholar]
- Coffey, M.D. Phytophthora root rot of avocado. Plant Dis. 1987, 71, 1046–1052. [Google Scholar]
- Ellstrand, N.C.; Lee, J.M.; Bergh, B.O.; Coffey, M.D.; Zentmyer, G.A. Isozymes confirm hybrid parentage for 'G755' selections. Calif. Avocado Soc. Yearb. 1986, 70, 199–203. [Google Scholar]
- Schroeder, C.A. Persea schiedeana, the coyo, a possible rootstock for avocado in South Africa. Calif. Avocado Soc. Yearb. 1974, 57, 18–23. [Google Scholar]
- Angel-Coronel, O.A.D.; Cruz-Castillo, J.G.; Cruz-Medina, J.D.L.; Famiani, F. Ripening and physiological changes in the fruit of persea schiedeana nees during the postharvest period. HortScience 2010, 45, 172–175. [Google Scholar]
- Castillo, C.J.G.; Gil, M.S.; de la Medina, C.J.S.; Castellanos, N.P.; Bracamontes, F.R.; Espinoza, J.P.; Martinez, L. El Chinene (Persea schiedeana Nees): buscando suvaloracion en Mexico contemporaneo. Aqui Centros Regionales 2004, 11, 1–7. (in Spanish). [Google Scholar]
- Berasategi, I.; Barriuso, B.; Ansorena, D.; Astiasarán, I. Stability of avocado oil during heating: Comparative study to olive oil. Food Chem. 2012, 132, 439–446. [Google Scholar] [CrossRef]
- Wolfe, A.; Wong, M.; Eyres, L.; McGhie, T.; Lund, C.; Olsson, S.; Wang, Y.; Bulley, C.; Wang, W.; Friel, E.; et al. Avocado Oil. In Gourmet and Health Promoting Specialty Oils; Moreau, R., Kamal-Eldin, A., Eds.; AOCS Press: Urbana, IL, USA, 2009; pp. 73–126. [Google Scholar]
- Bray, D.B.; Duran, E.; Anta, S.; Martin, G.; Mondragon, F. A new conservation and development frontier: community protected areas in Oaxaca, Mexico. Curr. Conserv. 2008, 2, 7–9. [Google Scholar]
- Bray, D.; Duran, E.; Molina, O. Beyond harvests in the commons: multi-scale governance and turbulence in indigenous/community conserved areas in Oaxaca, Mexico. Int. J. Commons 2012, 6, 151–178. [Google Scholar]
- Bacon, C.M. Confronting the Coffee Crisis: Fair Trade, Sustainable Livelihoods and Ecosystems in Mexico and Central America; MIT Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Tenorio, M.; Flores, A.; Lopez de Jesus, P. Distribucion, Biologia Floral y Dicogamia (Persea Schiedeana Nees.) en la Region Centro del Estado de Veracruz. In Enfoques Tecnológicos en la Fruticultura, un Tributo a Raul Mosqueda; (in Spanish). Cruz-Castillo, J.G., Torres Lima, P., Eds.; Universidad Autónoma de Chapingo: Chapingo, Mexico, 2008. [Google Scholar]
- González-Soberanis, C.; Casas, A. Traditional management and domestication of tempesquistle, Sideroxylon palmeri (Sapotaceae) in the Tehuacán-Cuicatlán Valley, Central Mexico. J. Arid Environ. 2004, 59, 245–258. [Google Scholar] [CrossRef]
- Borgatti, S. Anthropac 4.0; Analytic Technologies: Natick, MA, USA, 1996. [Google Scholar]
- Casas, A.; Otero-Arnaiz, A.; Perez-Negron, E.; Valiente-Banuet, A. In situ management and domestication of plants in mesoamerica. Ann. Bot. 2007, 100, 1101–1115. [Google Scholar] [CrossRef]
- Clement, C. 1492 and the loss of amazonian crop genetic resources. I. The relation between domestication and human population decline. Econ. Bot. 1999, 53, 188–202. [Google Scholar] [CrossRef]
- Akinnifesi, F.; Leakey, R.; Ajayi, O.; Sileshi, G.; Tchoundjeu, Z.; Matakala, P.; Kwesiga, F. Indigenous Fruit Trees in the Tropics: Domestication, Utilization and Commercialization; CAB International: Wallingford, UK, 2008. [Google Scholar]
- Reddy, M.; Moodley, R.; Jonnalagadda, S.B. Fatty acid profile and elemental content of avocado (Persea americana Mill.) oil--effect of extraction methods. J. Environ. Sci. Health B 2012, 47, 529–537. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bost, J. Persea schiedeana: A High Oil “Cinderella Species” Fruit with Potential for Tropical Agroforestry Systems. Sustainability 2014, 6, 99-111. https://doi.org/10.3390/su6010099
Bost J. Persea schiedeana: A High Oil “Cinderella Species” Fruit with Potential for Tropical Agroforestry Systems. Sustainability. 2014; 6(1):99-111. https://doi.org/10.3390/su6010099
Chicago/Turabian StyleBost, Jay. 2014. "Persea schiedeana: A High Oil “Cinderella Species” Fruit with Potential for Tropical Agroforestry Systems" Sustainability 6, no. 1: 99-111. https://doi.org/10.3390/su6010099
APA StyleBost, J. (2014). Persea schiedeana: A High Oil “Cinderella Species” Fruit with Potential for Tropical Agroforestry Systems. Sustainability, 6(1), 99-111. https://doi.org/10.3390/su6010099