Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds
Abstract
:1. Introduction
- Physical requirements (high density, high latent heat of fusion for unit mass, high specific heat);
- Chemical requirements (chemical stability, chemical non decomposition, non-corrosiveness with respect to the construction materials, non-toxicity);
- Economic requirements (wide availability of material, low material costs).
2. Clathrate Hydrates as Phase Change Materials
PCMs | Melting Temperature | Latent Heat of Melting | Other Investigated Parameters | Advantages/Disadvantages |
---|---|---|---|---|
Inorganic PCM: Hydrated salts | From ~8 °C to ~117 °C | ~150–200 kJ/kg | Thermal conductivity: ~0.5 W/m °C (liquid), ~0.8 W/m °C (solid) |
|
Organic PCM: Paraffin waxes | From ~22 °C to ~67 °C commercial waxes | ~200 kJ/kg | Thermal conductivity: ~ 0.2 W/m °C |
|
Organic PCM: Fatty acids | From ~30 °C to ~65 °C. | From ~153 kJ/kg to ~182 kJ/kg | Thermal conductivity: ~ 0.15 W/m °C | |
Eutectics of organic and non-organic compounds | From ~−30 °C to ~−10 °C | From ~131 kJ/kg To ~283 kJ/kg | Density: ~1283 to ~1126 (liquid), ~1251 to ~1105 (solid) |
|
Guest | Hydration number | Melting temperature (°C) | Latent heat (kJ/kg) | Density (kg/m3) | Heat capacity (kJ/(kg·K)) | Thermal conductivity (W/(m·K)) |
---|---|---|---|---|---|---|
TBAB hydrate crystal | Type A 26 | 12.0 [40], 12.3 [41], 11.8 [37,38] | 193.2 [40], 210 [48] | 1080 [51] | 2.22–2.61 [51], 1.859–2.605 [40] | 0.42 [51] |
Type B 36/38 | 9.9 [40], 9.6 [41] | 199.6 [40], 205 [42,43], 224 [48] | 1030 [51] | 2.00–2.54 [51] 2.5 (5 °C) [48] 1.995–2.541 [40] | ||
TBAB clathrate hydrate slurry (5–30 wt%) | - | 1015.69–1015.56 [51] | 4.001–3.667 [51] | 0.469–0.485 [51] |
Clathrate Hydrates of Organic Compounds
Guest | Hydration number | Melting temperature (°C) | Heat of fusion (kJ/mol) | Density (kg/m3) |
---|---|---|---|---|
(n-C4H9)4NF | 30 [44], 30 [52], 32 [53], 28 [53] | 28.3 [44], 25 [52], 27.2 [53], 27.4 [49] | 184 [44], 197 [52], 204 [54], 177 [54] | 1057 [44] |
(n-C4H9)4NCl | 30 [44] | 15.0 [44] | 156 [44] | 1026 [44] |
(i-C5H11)4NF | 39 [44], 28 [49] | 31.5 [44], 26.4 [49] | 256 [44] | |
(i-C5H11)4NCl | 39 [44] | 29.6 [44] | 283 [44] |
3. Clathrate Hydrates for Building Applications: Thermal Comfort Evaluation
Base Case | Envelope | Layers | Material thickness (mm) | Thermal conductivity (W/(m·K)) |
Floor/Ceiling | Gypsum | 15 | 0.2 | |
Concrete | 250 | 1.6 | ||
Polyurethane | 20 | 0.025 | ||
Cement floating screed | 30 | 1.6 | ||
Walls | Gypsum (Internal) | 15 | 0.2 | |
Full brick masonry | 300 | 0.6 | ||
Expanded polystyrene | 80 | 0.04 | ||
Mineral (External) | 10 | 0.8 | ||
Case 1 | Envelope | Layers | Material thickness (mm) | Thermal conductivity (W/(m·K)) |
Floor/Ceiling | Gypsum | 15 | 0.2 | |
Concrete | 250 | 1.6 | ||
Polyurethane | 20 | 0.025 | ||
Cement floating screed | 30 | 1.6 | ||
Walls | Micronal PCM 23 | 15 | 0.196 | |
Full brick masonry | 300 | 0.6 | ||
Expanded polystyrene | 80 | 0.04 | ||
Mineral (External) | 10 | 0.8 | ||
Case 2 | Envelope | Layers | Material thickness (mm) | Thermal conductivity (W/(m·K)) |
Floor/Ceiling | Gypsum | 15 | 0.2 | |
Concrete | 250 | 1.6 | ||
Polyurethane | 20 | 0.025 | ||
Cement floating screed | 30 | 1.6 | ||
Walls | Micronal PCM 26 | 15 | 0.196 | |
Full brick masonry | 300 | 0.6 | ||
Expanded polystyrene | 80 | 0.04 | ||
Mineral (External) | 10 | 0.8 | ||
Case 3 | Envelope | Layers | Material thickness (mm) | Thermal conductivity (W/(m·K)) |
Floor/Ceiling | Gypsum | 15 | 0.2 | |
Concrete | 250 | 1.6 | ||
Polyurethane | 20 | 0.025 | ||
Cement floating screed | 30 | 1.6 | ||
Walls | (n-C4H9)4NF·30H2O | 15 | 0.4 | |
Full brick masonry | 300 | 0.6 | ||
Expanded polystyrene | 80 | 0.04 | ||
Mineral (External) | 10 | 0.8 |
Guest | Hydration number | Melting temperature (°C) | Heat of fusion (kJ/mol) | Density (kg/m3) | Heat capacity (kJ/(kg·K)) | Thermal conductivity (W/(m·K)) |
---|---|---|---|---|---|---|
(n-C4H9)4NF | 30 [44] | 25 [52] | 197 [52] | 1.057 [44] | 3.6 [57] | 0.4 [58] |
Results and Discussion
Case Study | No. of hours with temperature exceeding comfort range (>26 °C) (h) | Time with temperature exceeding comfort range (>26 °C) (%) |
---|---|---|
Base Case | 552 | 6.3 |
Case 1, Micronal 23 | 543 | 6.2 |
Case 2, Micronal 26 | 499 | 5.7 |
Case 3, (n-C4H9)4NF·30H2O | 456 | 5.2 |
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Administration USEI. How much energy is consumed in the world by each sector? Available online: http://www.eia.gov/tools/faqs/faq.cfm?id=447&t=3 (accessed on 20 September 2014).
- Pisello, A.L.; Rossi, F.; Cotana, F. Summer and winter effect of innovative cool roof tiles on the dynamic thermal behavior of buildings. Energies 2014, 7, 2343–2361. [Google Scholar]
- Rossi, F.; Cotana, F.; Filipponi, M.; Nicolini, A.; Menon, S.; Rosenfeld, A. Cool roof as a strategy to tackle global warming: Economical and technical opportunities. Adv. Build. Energ. Res. 2013, 7, 254–268. [Google Scholar]
- Rossi, F.; Pisello, A.L.; Nicolini, A.; Filipponi, M.; Palombo, M. Analysis of retro reflective surfaces for urban heat Island mitigation: A new analytical model. Appl. Energ. 2014, 114, 621–631. [Google Scholar]
- Pasupathy, A.; Velraj, R.; Seeniraj, R.V. Phase change material-based building architecture for thermal management in residential and commercial establishments. Renew. Sustain. Energ. Rev. 2008, 12, 39–64. [Google Scholar]
- Kuznik, F.; David, D.; Johannes, K.; Roux, J. A review on phase change materials integrated in building walls. Renew. Sustain. Energ. Rev. 2011, 15, 379–391. [Google Scholar]
- Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S. A review on phase change energy storage: Materials and applications. Energ. Convers. Manag. 2004, 45, 1597–1615. [Google Scholar]
- Kuznik, F.; Virgone, J. Experimental assessment of a phase change material for wall building use. Appl. Energ. 2009, 86, 2038–2046. [Google Scholar]
- Ibanez, M.; Lazaro, A.; Zalba, B.; Cabeza, L.F. An approach to the simulation of PCMs in building applications using TRNSYS. Appl. Therm. Eng. 2005, 25, 1796–1807. [Google Scholar]
- Wutting, R. Phase Change Materials: Science and Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Abhat, A. Low temperature latent heat thermal energy storage: Heat storage materials. Sol. Energ. 1983, 30, 313–332. [Google Scholar]
- Lorsch, H.G.; Kauffman, K.W.; Denton, J.C. Thermal energy storage for heating and air conditioning, future energy production system. Heat Mass Transf. Process. 1976, 1, 69–85. [Google Scholar]
- Lane, G.A.; Glew, D.N.; Clark, E.C.; Rossow, H.E.; Quigley, S.W.; Drake, S.S.; Best, J.S. Heat of fusion system for solar energy storage. In Proceedings of the Workshop on Solar Energy Storage Subsystems for the Heating and Cooling of Buildings, Charlottesville, Virginia, 16–18 April 1975.
- Humphries, W.R.; Griggs, E.I. A design handbook for phase change thermal control and energy storage devices. Recon Tech. Rep. 1977, 78. Article 15434. [Google Scholar]
- Castellani, B.; Filipponi, M.; Rinaldi, S.; Rossi, F. Capture of carbon dioxide using gas hydrate technology. In Proceedings of ECOS 2012—The 25th International Conference on Efficiency, Cost, Optimization, Simulation And Environmental Impact Of Energy Systems, Perugia, Italy, 26–29 June 2012.
- Rossi, F.; Filipponi, M.; Castellani, B. Investigation on a novel reactor for gas hydrates production. Appl. Energ. 2012, 99, 167–172. [Google Scholar]
- Youssef, Z.; Delahaye, A.; Huang, L.; Trinquet, F.; Fournaison, L.; Pollerberg, C.; Doetsch, C. State of the art on phase change material slurries. Energ. Convers. Manag. 2013, 65, 120–132. [Google Scholar]
- Soares, N.; Costa, J.J.; Gaspar, A.R.; Santos, P. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energ. Build 2013, 59, 82–103. [Google Scholar]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Phase change materials for building applications: A state-of-the-art review. Energ. Build 2010, 42, 1361–1368. [Google Scholar]
- Kenisarin, M.; Mahkamov, K. Solar energy storage using phase change materials. Renew. Sustain. Energ. Rev. 2007, 11, 1913–1965. [Google Scholar]
- Cabeza, L.F.; Castell, A.; Barreneche, C.; de Gracia, A.; Fernández, A.I. Materials used as PCM in thermal energy storage in buildings: A review. Renew. Sustain. Energ. Rev. 2011, 15, 1675–1695. [Google Scholar]
- Zalba, B.; Marıń, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar]
- Oró, E.; de Gracia, A.; Castell, A.; Farid, M.M.; Cabeza, L.F. Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl. Energ. 2012, 99, 513–533. [Google Scholar]
- Farid, M.M.; Mohamed, A.K. Effect of Natural convection on the process of melting and solidification of paraffin wax. Chem. Eng. Commun. 1987, 57, 297–316. [Google Scholar]
- Farid, M.M.; Kanzawa, A. Thermal performance of a heat storage module using PCMs with different melting temperatures-mathematical modeling. Trans. ASME J. Sol. Energ. Eng. 1989, 111, 152–157. [Google Scholar]
- Hasnain, S.M. Review on sustainable thermal energy storage technologies, Part 1: Heat storage materials and techniques. Energ. Convers. Manag. 1998, 39, 1127–1138. [Google Scholar]
- Schröder, J. Some Materials and Measures to Store Latent Heat. In Proceeding of IEA—Workshop on Latent Heat Stores Technology and Applications; Zentralbibliothek der Kernforschungsanlage: Julich, Germany, 1985. [Google Scholar]
- Wang, X.; Dennis, M.; Hou, L. Clathrate hydrate technology for cold storage in air conditioning sysrems. Renew. Sustain. Energ. Rev. 2014, 36, 34–51. [Google Scholar]
- Li, G.; Hwang, Y.; Radermacher, R. Review of cold storage materials for air conditioning Application. Int. J. Refrig. 2012, 35, 2053–2077. [Google Scholar]
- Tomlinson, J.J. Heat pump cool storage in a clathrate of freon. In Proceeding of the 17th Intersociety Energy Conversion Engineering Conference; The Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 1982; pp. 2060–2064. [Google Scholar]
- Ternes, M.P. Studies on the R-12 gas hydrate formation process for heat pump cool storage Application. In Proceedings of DOE Physical and Chemical Energy Storage Annual Contractor’s Review Meeting, Arlington, VA, USA, 12–14 September 1983.
- kiya, T.; Tomio, S.; Oowa, M. Phase equilibria of some alternative refrigerants hydrates and their mixtures using for cool storage material. In Proceeding of the 32th Intersociety Energy Conversion Engineering Conference, Honolulu, HI, USA, 27 July–1 August 1997.
- Mori, T.; Mori, Y.H. Characterization of gas hydrate formation in direct-contact cool storage process. Int. J. Refrig. 1989, 12, 259–265. [Google Scholar]
- Guo, K.H.; Shu, B.F.; Yang, W.J. Advances and applications of gas hydrate thermal energy storage technology. In Proceeding of the 1st Trabzon International Energy & Environment Symposium, Trabzon, Turkey, 29–31 July 1996.
- Guo, K.H.; Shu, B.F.; Zhao, Y.L. Characterization of phase change and cool-storage process of mixed gas hydrate, cryogenics and refrigeration. In Proceeding of ICCR’98, Hangzhou, China, 21–24 April 1998.
- Fournaison, L.; Delahaye, A.; Chatti, I.; Petitet, J.P. CO2 hydrates in refrigeration processes. Ind. Eng. Chem. Res. 2004, 43, 6521–6526. [Google Scholar]
- Oowa, M.; Nakaiwa, M.; Akiya, T.; Fukuura, H.; Suzuki, K.; Ohsuka, M. Formation of CFC alternative R134a gas hydrate. In Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, New York, NY, USA, 12–17 August 1990.
- Anii, T.; Minemoto, M.; Nakazawa, K. Study on a cool storage system using HCFC (Hydro-chlorofluoro-carbon)-141b (CCl2FCH3) (1,1-dichloro-1-fluoro-ethane) clathrate. Can. J. Chem. Eng. 1997, 75, 353–361. [Google Scholar]
- Arinhas, S.; Delahaye, A.; Fournaison, L.; Dalmazzone, D.; Furst, W.; Petitet, J.P. Modeling of the available latent heat of a CO2 hydrate slurry in an experimental loop applied to secondary refrigeration. Chem. Eng. Process. 2006, 45, 184–192. [Google Scholar] [CrossRef]
- Oyama, H.; Shimada, W.; Ebinuma, T.; Kamata, Y.; Takeya, S.; Uchida, T.; Nagao, J.; Narita, H. Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals. Fluid Phase Equilib. 2005, 234, 131–135. [Google Scholar]
- Darbouret, M.; Cournil, M.; Herri, J.M. Rheological study of TBAB hydrate slurries as secondary two-phase refrigerants. Int. J. Refrig. 2005, 28, 663–671. [Google Scholar]
- Hayashi, K.; Takao, S.; Ogoshi, H.; Matsumoto, S. Research and development on high-density cold latent-heat medium transportation technology. In Proceedings of the Fifth Workshop on Phase change material for thermal energy storage, Tsu, Japan, 12–14 April 2000.
- Ogoshi, H.; Takao, S. Air-conditioning system using clathrate hydrate slurry. JFE Tech. Rep. 2004, 3, 1–5. [Google Scholar]
- Nakayama, H. Hydrates of organic compounds. Heats of fusion and of solution of quaternary ammonium halide clathrate hydrates. Bull. Chem. Soc. Jpn. 1982, 55, 389–393. [Google Scholar] [CrossRef]
- Dyadin, Y.A.; Udachin, K.A. Clathrate formation in water of peralkylonium salts systems. J. Incl. Phenom. 1998, 42, 61–72. [Google Scholar]
- Leaist, D.G.; Murray, J.J.; Post, M.L.; Davidson, D.W. Enthalpies of decomposition and heat capacities of ethylene oxide and tetrahydrofuran hydrates. J. Phys. Chem. 1982, 86, 4175–4178. [Google Scholar]
- Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H. Thermal property measurements in Tetrahydrofuran (THF) hydrate and hydrate-bearing sediment between −25 and +4 °C, and their application to methane hydrate. In Fifth International Conference on Gas Hydrates; Tapir Academic Press: Trondheim, Norway, 2005. [Google Scholar]
- Asaoka, T.; Kumano, H.; Serita, M. Measurement of latent heat of tetra-n-butylammonium bromide (TBAB) hydrate. Int. J. Refrig. 2013, 36, 992–997. [Google Scholar]
- Nakayama, H. Hydrates of organic compounds. The effect of alkyl groups on the formation of quaternary ammonium fluoride hydrates. Bull. Chem. Soc. Jpn. 1976, 49, 1254–1256. [Google Scholar] [CrossRef]
- Douzet, J.; Kwaterski, M.; Lallemand, A.; Chauvy, F.; Flick, D.; Herri, J.M. Prototyping of a real size air-conditioning system using a tetra-n-butylammonium bromide semiclathrate hydrate slurry as secondary two-phase refrigerant—Experimental investigations and modeling. Int. J. Refrig. 2013, 36, 1616–1631. [Google Scholar]
- Ma, Z.W.; Zhang, P.; Wang, R.Z. Performance of a cold storage air-conditioning system using tetrabutylammonium bromide clathrate hydrate slurry. In Proceeding of World Renewable Energy Congress, Linkoping, Sweden, 8–13 May 2011.
- Narten, A.H.; Lindenbaum, S. Diffraction Pattern and Structure of the System Tetra-n-butylammonium Fluoride—Water at 25 °C. J. Chem. Phys. 1969, 51, 1108–1114. [Google Scholar]
- Aladko, L.S.; Dyadin, Y.A.; Rodionova, T.V.; Terekhova, I.S. Clathrate Hydrates of Tetrabutylammonium And Tetraisoamylammonium Halides. J. Struct. Chem. 2002, 43, 990–994. [Google Scholar]
- Rodionova, T.V.; Manakov, A.Y.; Stenin, Y.G.; Villevald, G.V.; Karpova, T.D. The heats of fusion of tetrabutylammonium fluoride ionic clathrate hydrates. J. Incl. Phenom. Macrocycl. Chem. 2008, 6, 107–111. [Google Scholar] [CrossRef]
- Nakayama, H. Hydrates of organic compounds. The effect of carboxylate anions on the formation of Clathrate hydrates of tetrabutylammonium carboxylates. Bull. Chem. Soc. Jpn. 1984, 57, 171–174. [Google Scholar] [CrossRef]
- Nakayama, H. Hydrates of organic compounds. The formation of clathrate-like hydrates of tetraisopentylammonium alkanoates and alkanedioates. Bull. Chem. Soc. Jpn. 1991, 64, 358–365. [Google Scholar]
- Gabitto, J.F.; Tsouris, C. Physical properties of gas hydrates: A review. J. Therm. 2010. [Google Scholar] [CrossRef]
- English, N.J.; Tse, J.S. Perspectives on hydrate thermal conductivity. Energies 2010, 3, 1934–1942. [Google Scholar]
- Colcough, S.; Griffiths, P.; Gschwander, S. Thermal energy storage and the passive house standard: How PCM incorporated into wallboards can aid thermal comfort. In Proceedings of the 26th Conference on Passive and Low Energy Architecture, Quebec City, QC, Canada, 22–24 June 2009.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellani, B.; Morini, E.; Filipponi, M.; Nicolini, A.; Palombo, M.; Cotana, F.; Rossi, F. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds. Sustainability 2014, 6, 6815-6829. https://doi.org/10.3390/su6106815
Castellani B, Morini E, Filipponi M, Nicolini A, Palombo M, Cotana F, Rossi F. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds. Sustainability. 2014; 6(10):6815-6829. https://doi.org/10.3390/su6106815
Chicago/Turabian StyleCastellani, Beatrice, Elena Morini, Mirko Filipponi, Andrea Nicolini, Massimo Palombo, Franco Cotana, and Federico Rossi. 2014. "Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds" Sustainability 6, no. 10: 6815-6829. https://doi.org/10.3390/su6106815
APA StyleCastellani, B., Morini, E., Filipponi, M., Nicolini, A., Palombo, M., Cotana, F., & Rossi, F. (2014). Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds. Sustainability, 6(10), 6815-6829. https://doi.org/10.3390/su6106815