Terra Preta Sanitation: A Key Component for Sustainability in the Urban Environment
Abstract
:1. Introduction
- Can case studies of realized and operated water born TPS systems, which are suitable to extend existing CSS, be identified and located?
- What are some feasible and applied technologies and systems approaches for TPS systems in areas with CSS and how do they work?
- What are the benefits and achievable savings of water born TPS in comparison with CSS?
2. Method
- (1)
- Public toilet facility at the central train station, Hamburg, Germany
- (2)
- Private households, Nairobi, Kenya
- (3)
- Toilet facilities for visitors and employees at the Botanical Garden of Berlin, Germany
3. Results and Discussion
3.1. Sustainable Sanitation in Urban Infrastructure Systems
3.2. Approaches for Integrated TPS Systems
3.2.1. TPS System Expansion Stage 1
3.2.2. TPS System Expansion Stage 2
3.3. TPS System of the TerraBoGa Project in the Botanic Garden Berlin
3.3.1. TPS System at the TerraBoGa Project
3.3.2. Background and Resource Flows of the TerraBoGa TPS System
- Nitrogen: 65 kg/a
- Phosphorous: 8 kg/a
- Urine: 10 m3/a
- Nitrogen: 1.613 kg/a
- Phosphate 164 kg/a
- Urine: 211 m3/a
3.3.3. Technology Description of the TerraBoGa TPS System
3.4. Quantification of Potential Water Savings and Nutrient Recovery Potential of TPS Systems
- 34,400 visitors or toilet users per year
- 300 working days per year
- Similar numbers of female and male visitors or toilet users
- 80% of the visitors use the toilets only for urination.
- 20% of the visitors use the toilets also for bowel evacuation (fecal)
- In the case of bowel evacuation, the full flush is used on average 1.8 times per toilet use (because the full flush maybe used twice for bowel evacuation).
- Female visitors use the half flush option after urination in 70% of the cases. In the remaining 30%, the full flush option is used (because full flush may be used after urination).
- Male visitors use the half flush option after urination in 50% of the cases. In the other 50%, the full flush option is used (because full flush may be used after urination).
- 20% of male visitors use flush toilets installed in closed cabins for urination instead of waterless urinals.
Water Closets | |
---|---|
Number of installed water closets | 9 |
Number of the cleaning processes per day | 6 |
Number of full flushes per cleaning process | 1 |
Urinals | |
Number of urinals | 3 |
Frequency of the cleaning processes per day | 3 |
Number of flushes per cleaning process | 1 |
Water Consumption and Achievable Savings for Different WC Types and Uses (nine WCs) | Water Saving WC (3,5/2 L) | Standard WC (6/4 L) |
---|---|---|
Water consumption for WC flushing | 85,000 L | 151,000 L |
Water consumption for WC cleaning | 57,000 L | 97,000 L |
Total water consumption for WC flushing & cleaning | 142,000 L | 248,000 L |
Achievable savings in water consumption | 106,000 L | 0 L |
Achievable savings drinking water and sewage fee | 409 Euro | 0 Euro |
Water Consumption and Achievable Savings for Different Urinal Types and Uses (three urinals) | Waterless Urinal | Standard Urinal (4 L) |
---|---|---|
Water consumption for urinal flushing | 0 L | 44,000 L |
Water consumption for urinal cleaning | 0 L | 11,000 L |
Total water consumption for urinal flushing & cleaning | 0 L | 55,000 L |
Achievable savings in water consumption | 55,000 L | 0 L |
Achievable savings drinking water and sewage fee | 209 Euro | 0 Euro |
Kind of discharge and gender | Number of discharges |
---|---|
Number of discharges urine female | 12,757 |
Number of discharges urine male | 12,757 |
Number of bowel discharges female | 3439 |
Number of bowel discharges male | 3439 |
Content in Feces (Female & Male) | Gram per Person & Day | Daily Content of Urine (Female & Male) | Gram per Person & Day |
---|---|---|---|
ODR | 35 | OTR | 0 |
BOD5 | 20 | BOD | 5 |
COD | 60 | COD | 10 |
Nitrogen | 1,5 | N | 10,4 |
Phosphorous | 0,5 | P | 1 |
Potassium | 7,7 | K | 2,5 |
Sulfur | 0,2 | S | 0,7 |
Supply of Nutrients per Year | kg |
---|---|
ODR | 333.3 |
BOD5 | 219.7 |
COD | 465.8 |
Nitrogen | 65.6 |
Phosphorous | 8.8 |
Potassium | 18.1 |
Sulfur | 5.1 |
Quantity per year | m3 |
Volume urine | 7.3 |
Volume feces | 1.0 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Girardet, H.; Mendonça, M. A Renewable World: Energy, Ecology, Equality; Green Books: Cambridge, UK, 2009; p. 256. [Google Scholar]
- Lüthi, C.; Panesar, A.; Schütze, T.; Norström, A.; McConville, J.; Parkinson, J.; Saywell, D.; Ingle, R. Sustainable Sanitation in Cities—A Framework for Action, 1st ed.; Papiroz Publishing House: The Hague, The Netherlands, 2011; p. 169. [Google Scholar]
- United Nations Environment Programme. Capacity Building for Sustainable Development: An Overview of UNEP Environmental Capacity Development Initiatives; UNEP: Nairobi, Kenya, 2002; p. 164. [Google Scholar]
- United Nations Environment Programme. GEO 4 Environment for Development; United Nations Environment Programme: Nairobi, Kenya, 2007; pp. 421–423. [Google Scholar]
- Schuetze, T.; Lee, J.-W.; Lee, T.-G. Sustainable Urban (re-)Development with Building Integrated Energy, Water and Waste Systems. Sustainability 2013, 5, 1114–1127. [Google Scholar] [CrossRef]
- Schuetze, T.; Tjallingi, S.P.; Correlje, A.; Ryu, M.; Graaf, R.; van der Ven, F. Every Drop Counts: Environmentally Sound Technologies for Urban and Domestic Water Use Efficiency, 1st ed.; United Nations Environment Programme: Nairobi, Kenya, 2008; p. 197. [Google Scholar]
- Larsen, T.A.; Udert, K.M.; Lienert, J. Source Separation and Decentralization for Wastewater Management; IWA Publishing: London, UK, 2013; p. 520. [Google Scholar]
- Sustainable Sanitation Alliance Sustainable Sanitation Alliance. Available online: http://www.susana.org/en/ (accessed on 11 October 2014).
- Winblad, U.; Simpson-Hebert, M. Ecological Sanitation—Revised and Enlarged Edition; Stockholm Institute of Environment: Stockholm, Sweden, 2004; p. 141. [Google Scholar]
- Lens, P.; Zeeman, G.; Lettinga, G. Decentralised Sanitation and Reuse—Concepts, Systems and Implementation; IWA Publishing: London, UK, 2001; p. 650. [Google Scholar]
- Tilley, E.; Lüthi, C.; Morel, A.; Zurbrügg, C.; Schertenleib, R. Compendium of Sanitation Systems and Technologies; Swiss Federal Institute of Aquatic Science and Technology (Eawag): Duebendorf, Switzerland, 2008; p. 158. [Google Scholar]
- Lüthi, C.; Panesar, A. Source separation in middle- and low-income countries. In Source Separation and Decentralization of Wastewater Management; Larsen, T.A., Udert, K.M., Lienert, J., Eds.; IWA Publishing: London, UK, 2013; pp. 455–462. [Google Scholar]
- Factura, H.; Bettendorf, T.; Buzie, C.; Pieplow, H.; Reckin, J.; Otterpohl, R. Terra Preta sanitation: Re-discovered from an ancient Amazonian civilisation—integrating sanitation, bio-waste management and agriculture. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2010, 61, 2673–2679. [Google Scholar] [CrossRef]
- De Gisi, S.; Petta, L.; Wendland, C. History and Technology of Terra Preta Sanitation. Sustainability 2014, 6, 1328–1345. [Google Scholar] [CrossRef]
- EM Research Organization Inc. EMRO. Available online: http://www.emrojapan.com (accessed on 11 October 2014).
- Higa, T.; Wididanaand, G.N. The concept and theories of effective microorganisms. In First International Conference on Kyusei Nature Farming; Hornick, S.B., Whitman, C.E., Eds.; U.S. Department of Agriculture: Washington, DC, USA, 1991; pp. 118–124. [Google Scholar]
- Park, H.; DuPonte, M.W. How to Cultivate Indigenous Microorganisms; College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai’I Manoa: Honolulu, USA, 2008; p. 7. [Google Scholar]
- Saburo, M. Composting: Organic Farming. In Encyclopedia of Environmental Management; Jorgensen, S.E., Ed.; Taylor & Francis: London, UK, 2013; pp. 528–534. [Google Scholar]
- Scheub, U.; Pieplow, H.; Schmidt, H.P. Terra Preta—Die Schwarze Revolution aus dem Regenwald, 2nd ed.; Oekom: Munich, Germany, 2013; p. 206. [Google Scholar]
- Schuetze, T.; Runge, R. Zero Emission Building—Integrating Sustainable Technologies and Infrastructure Systems. Available online: http://www.zebistis.ch/index.php?option=com_content&view=article&id=3&Itemid=103 (accessed on 26 September 2014).
- Larsen, T.A.; Gebauer, G.; Gruendl, H.; Kuenzle, R.; Lethi, C.; Messmer, U.; Morgenroth, E.; Ranner, B. Diversion for safe sanitation: A new approach to sanitation in informal settlements. In Proceedings of the Second International Faecal Sludge Management Conference, Durban, South Africa, 29–31 October 2012; International Water Association—IWA: Durban, South Africa, 2012; pp. 1–8. [Google Scholar]
- Lüthi, C. Reinventing the next generation toilet technology. In Proceedings of the 5th International Symposium Zero Emission Building—Integrating Sustainable Technologies and Infrastructure Systems, Waedenswil, Switzerland, 21–22 August 2014; ZHAW: Waedenswil, Switzerland, 2014; pp. 1–14. [Google Scholar]
- Hati GmbH. Water Saving Calculator; Hati GmbH: Berlin, Germany, 2011. [Google Scholar]
- Hati GmbH. Nutrient Calculator; Hati GmbH: Berlin, Germany, 2012. [Google Scholar]
- Abegglen, C.; Joss, A.; Siegrist, H. Eliminating Micropollutants: Wastewater Treatment Methods; Eawag: Duebendorf, Switzerland, 2009; pp. 25–27. [Google Scholar]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Genath, B. Dem geschlossenen Kreislauf jetzt ganz nahe. Urin zu Spülwasser—Weltpremiere in Hamburg Hauptbahnhof. HLH Lüftung/Klima 2014, 2, 79–84. [Google Scholar]
- FU Berlin Terraboga. Available online: http://www.terraboga.de (accessed on 24 June 2014).
- United Nations Environment Programme. Buildings and Climate Change Summary for Decision-Makers; UNEP DTIE Sustainable Consumption and Production Branch: Paris, France, 2009; p. 62. [Google Scholar]
- Villeroy & Boch Omnia GreenGain. Available online: https://pro.villeroy-boch.com/en/gb/home/bathroom-and-wellness/architects-planners/innovations/innovationen-detailseiten/omnia-green-gain.html (accessed on 31 October 2014).
- Thomas, P. TerraBoGa-Zwischenbericht der HATI GmbH; HATI GmbH: Berlin, Germany, 2011; p. 39. [Google Scholar]
- Goosse, P. NoMix Toilettensystem. GWA Mag. 2009, 7, 567–574. [Google Scholar]
- Schuetze, T.; van Loosdrecht, M.M. Urine Separation for Sustainable Urban Water Management. In Water Infrastructure for Sustainable Communities—China and the World; Hao, X., Novotny, V., Nelson, V., Eds.; IWA Publishing: London, UK, 2010; pp. 213–225. [Google Scholar]
- TECE GmbH catalog, page 42. Available online: http://www.tece.de/de/files/download/?file_id=5ca3c0999d5fc986e1235a06935b8effd9c0b68c (accessed on 30 October 2014).
- Keramag Centaurus. Available online: http://pro.keramag.com/en/products/urinals/centaurus.html (accessed on 30 October 2014).
- BioMaCon GmbH BioMassConverter. Available online: http://www.biomacon.com/index.html (accessed on 30 October 2014).
- Schuetze, T.; Santiago-Fandiño, V. Quantitative Assessment of Water Use Efficiency in Urban and Domestic Buildings. Water 2013, 5, 1172–1193. [Google Scholar] [CrossRef]
- Linkola, L.; Andrews, C.; Schuetze, T. An Agent Based Model of Household Water Use. Water 2013, 5, 1082–1100. [Google Scholar] [CrossRef]
- Hamburg Wasser Gebühren/Abgaben/Preise. Available online: http://www.hamburgwasser.de/tarife-und-gebuehren.html (accessed on 24 June 2014).
- Zeisel, J. Hati GmbH Amortization of Water Saving Urinals in the Public Toilet Facility of the Main Station Hamburg; Schuetze, T., Ed.; Hati GmbH: Berlin, Germany, 2013. [Google Scholar]
- DWA Deutsche Vereinigung für Wasserwirtschaft, A.u.A.e.V. Neuartige Sanitärsysteme, 1st ed.; DWA: Hennef, Germany, 2008; Volume 1, p. 327. [Google Scholar]
- Krauer, N.; Bunge, R. Bedarfsgeregelte Toilettenspülung. Umwelt Perspektiven 2010, 3, 46–47. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuetze, T.; Santiago-Fandiño, V. Terra Preta Sanitation: A Key Component for Sustainability in the Urban Environment. Sustainability 2014, 6, 7725-7750. https://doi.org/10.3390/su6117725
Schuetze T, Santiago-Fandiño V. Terra Preta Sanitation: A Key Component for Sustainability in the Urban Environment. Sustainability. 2014; 6(11):7725-7750. https://doi.org/10.3390/su6117725
Chicago/Turabian StyleSchuetze, Thorsten, and Vicente Santiago-Fandiño. 2014. "Terra Preta Sanitation: A Key Component for Sustainability in the Urban Environment" Sustainability 6, no. 11: 7725-7750. https://doi.org/10.3390/su6117725
APA StyleSchuetze, T., & Santiago-Fandiño, V. (2014). Terra Preta Sanitation: A Key Component for Sustainability in the Urban Environment. Sustainability, 6(11), 7725-7750. https://doi.org/10.3390/su6117725