Farmers’ Perception of Precision Farming Technology among Hungarian Farmers
Abstract
:1. Introduction
- (1)
- In the launch phase, it had an advantage over the technological elements widely used in farming, which could have made rapid diffusion possible.
- (2)
- Precision technology is less compatible, as farmers greatly vary in knowledge, skills and attitude toward innovations, as well as in farm size and financial background. Due to the lack of counseling support, the process of the proliferation of the new technology is slower.
- (3)
- The application of precision crop production requires far more attention, a wider information base and, also, more accurate work.
- (4)
- The key issue of letting farmers learn more and testing the new technology is the extension service (there have to be several specialist, scientific exhibitions and meetings in order to achieve wider diffusion).
- (5)
- Some of the benefits of precision technology can be observed directly (material savings, improved cost-effectiveness, yield growth), similarly to extra costs and investments. However, its indirect impacts, such as the reduction of the environmental load and increased food safety, are less obvious. As long as the positive impacts of the new technology are not obvious and measurable for farmers and the perceived risk of its introduction is high, the technology will diffuse slowly, even when the financial background is sufficient.
2. Experimental Section
3. Results and Discussion
Non-user (n1 = 48) a | User (n2 = 8) b | Planer (n3 = 16) c | ||
---|---|---|---|---|
Age of farmer | <40 year | 40% | 63% | 25% |
40–65 year | 42% | 38% | 75% | |
>65 year | 19% | 0% | 0% | |
Education | Secondary | 25% | 13% | 12% |
Higher | 32% | 63% | 57% | |
Cultivated land | <30 ha | 19% | 25% | 0% |
30–300 ha | 50% | 25% | 19% | |
>300 ha | 31% | 50% | 81% | |
ESU d | <4 ESU | 31% | 13% | 13% |
4–8 ESU | 14% | 25% | 6% | |
8–16 ESU | 19% | 0% | 25% | |
16–40 ESU | 12% | 13% | 19% | |
40–100 ESU | 7% | 25% | 25% | |
>100 ESU | 17% | 25% | 13% |
3.1. Adoption of Precision Farming Technology in the Examined Sample
Factors of adoption | Uncertainty coefficient | Cramer V | Strength of relation | ||
---|---|---|---|---|---|
Value | α | Value | α | ||
ESU category | 0.103 | 0.25 | 0.28 | 0.35 | no |
Cultivated land | 0.135 | 0.003 | 0.314 | 0.01 | medium * |
Soil heterogenetic | 0.005 | 0.754 | 0.08 | 0.8 | no |
Ranging of technologies | 0.05 | 0.191 | 0.19 | 0.27 | no |
Age of farmer | 0.09 | 0.02 | 0.25 | 0.04 | medium * |
Education | 0.08 | 0.48 | 0.24 | 0.61 | no |
3.2. Opinion of Farmers about the Advantages and Disadvantages of Precision Farming Technology
The most important effects of precision farming technology | User of precision farming technology | Planner of precision farming technology | Non-user of precision farming technology | |||
---|---|---|---|---|---|---|
Average | rank | Average | rank | Average | rank | |
(n = 8) | (n = 16) | (n = 48) | ||||
yield change | 2.75 | 1 | 2.81 | 4 | 2.26 | 4 |
income change * | 2.12 | 6 | 4.44 | 1 | 2.45 | 2 |
change of chemical use | 0.63 | 9 | −2.87 | 5 | −2.36 | 3 |
change of environmental damage | −1.38 | 8 | −4.19 | 2 | −2.70 | 1 |
change of labor force needs * | 2.37 | 3 | 0.62 | 9 | 0.70 | 9 |
change of work time | 2.25 | 4 | 0.44 | 10 | 0.57 | 10 |
change of operational costs | 0.37 | 10 | 2.50 | 6 | 2.02 | 5 |
change of organization | 2.75 | 1 | 2.44 | 7 | 1.74 | 6 |
change of yield quantity | 2.25 | 4 | 2.13 | 8 | 1.66 | 7 |
change in planning process | 2.00 | 7 | 2.88 | 3 | 1.57 | 8 |
3.3. Sentiment of the Variable Cost of Precision Farming Technology
4. Conclusions
Acknowledgment
Author Contributions
Conflicts of Interest
References
- Podmaniczky, L.; Ángyán, J.; Illés, B.C.; Straub, T. Farming in Protected Landscape: Economic Analysis of the Possibilities for Sustainable Agriculture; IUCN: Gland, Switzerland, 1997; p. 62. [Google Scholar]
- Illés, B.C.; Dunay, A.; Vida, A. Microeconomic modelling methods for utilizing renewable agricultural energy resources. In The Evaluation of Natural Resources; Ugrósdy, G., Molnár, J., Szűcs, I., Eds.; Agroinform Kiadó: Budapest, Hungary, 2014; pp. 273–292. [Google Scholar]
- Chilinsky, G.; Heal, G.; Vercelli, A. Sustainability: Dynamics and Uncertainty; Kluwe Academic Publication: Dordrecht, The Netherlands, 1998; p. 249. [Google Scholar]
- Swinton, S.M. Economics of site specific weed management. Weed Sci. 2005, 53, 259–263. [Google Scholar] [CrossRef]
- Szabó, G.; Katonáné-Kovács, J. A fenntarthatóság, környezetvédelem, hatékonyság (Sustainability, environment protection, efficiency). In Hatékonyság a Mezőgazdaságban: Elmélet és Gyakorlat (Efficiency in Agriculture: Theory and Practice); Szűcs, I., Farkasné-Fekete, M., Eds.; Agroinform Kiadó: Budapest, Hungary, 2008; pp. 319–337. [Google Scholar]
- Maciejczak, M. The concept of SMART specialization in the development of agribusiness sector on the example of clusters of innovations in agribusiness in Mazovia Province. Ann. Pol. Assoc. Agric. Agribus. Econ. 2012, 14, 169–176. [Google Scholar]
- Daróczi, M. The Contribution of Agricultural Machinery to Sustainable Agriculture. In Proceedings of the First International Symposium on Agricultural Engineering, Belgrade, Serbia, 4–6 October 2013; pp. 19–27.
- Milics, G.; Smuk, N.; Virág, I.; Neményi, M. Precision Agriculture—Technical Development for a Sustainable Agriculture. In Proceedings of the International Scientific Conference on Sustainable Development & Ecological Footprint, Sopron, Hungary, 26–27 March 2012; p. 5.
- Barkaszi, L.; Arutyunjan, A.; Takacsne-Gyorgy, K. Optimisation of the weed sampling system from an economic point of view on wheat (Triticum aestivum) stable with sunflower (Helianthus annuus) forecrop. Cereal Res. Commun. 2007, 35, 1527–1537. [Google Scholar] [CrossRef]
- Milics, G. Mapping soil properties for precision farming. In Proceedings of the 12th Alps-Adria Scientific Workshop, Opatija, Croatia & Doberdò, Venezia, Italy, 18–22 March 2013; pp. 405–408.
- Takács-György, K.; Takács, I. Economic analysis of precision weed management. Cereal Res. Commun. 2009, 37, 597–605. [Google Scholar] [CrossRef]
- Barosso, J.; Fernandez-Quintanilla, C.; Maxwell, B.D.; Rew, I.J. Simulating the effects of weed spatial pattern and resolution of mapping and spraying on economics of site-specific management. Weed Res. 2004, 44, 460–468. [Google Scholar] [CrossRef]
- Maxwell, B.D.; Luschei, E.C. Justification for site-specific weed management based on ecology and economics. Weed Sci. 2005, 53, 221–227. [Google Scholar] [CrossRef]
- Panten, K.; Haneklaus, S.; Rogasik, J.; Schnug, E. Predicting sugar beet yield variability using yield maps of combinable crops and the “monitor pedo cell” approach. Landbauforschung Völkenrode 2005, 286, 65–70. [Google Scholar]
- Auernhammer, H. Precision farming—The environmental challenge. Comput. Electron. Agric. 2001, 30, 31–43. [Google Scholar] [CrossRef]
- Neményi, M.; Pecze, Z.; Mesterházi, P.Á.; Németh, T. A precíziós-helyspecifikus növénytermesztés műszaki és térinformatikai feltételrendszere (Technical and GIS requirements of site-specific crop production). Növénytermelés 2001, 50, 419–430. [Google Scholar]
- Blackshaw, R.E.; O’Donovan, J.T.; Harker, K.N.; Clayton, G.W.; Stougaard, R.N. Reduced herbicide doses in field crops: A review. Weed Biol. Manag. 2006, 6, 10–17. [Google Scholar] [CrossRef]
- Batte, M.; van Buren, F. Precision farming—Factors influencing profitability. In Proceedings of the Northern Ohio Crops Day Meeting, Wood County, OH, USA, 21 January 1999.
- Pecze, Z. Precíziós gazdálkodás—csökkenő költségek (Precision agriculture—Decreasing costs). IKR Magazin 2006, Summer, 9. [Google Scholar]
- Rider, T.W.; Vogel, J.W.; Dille, J.A.; Dhuyvetter, K.C.; Kastens, T.L. An economic evaluation of site-specific herbicide application. Precis. Agric. 2006, 7, 379–392. [Google Scholar] [CrossRef]
- Arnholt, M.; Batte, M.T.; Prochaska, S. Adoption and Use of Precision Farming Technologies: A Survey of Central Ohio Precision Farmers; The Ohio State University: Columbus, OH, USA, 2001. [Google Scholar]
- Lowenberg-DeBoer, J.; Swinton, S.M. Economics of site-specific management in agronomic crops. In The State of Site-specific Management for Agricultural Systems; Pierce, F.J., Sadler, E.J., Eds.; American Society of Agronomy, Crop Science Society of America and Soil Science Society of America: Madison, WI, USA, 1997; pp. 369–396. [Google Scholar]
- Takács-György, K.; Takács, I. Risk assessment and examination of economic aspects of precision weed management. Sustainability 2011, 3, 1114–1135. [Google Scholar]
- Swinton, S.M.; Lowenberg-DeBoer, J. Global adoption of precision agriculture technologies: Who, when and why? In Proceedings of the 3rd European Conference on Precision Agriculture, Montpellier, France, 18–21 June 2001; pp. 557–562.
- Wilson, C.; Tisdell, C.A. Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol. Econ. 2001, 39, 449–462. [Google Scholar] [CrossRef]
- Pedersen, S.M.; Fountas, S.; Blackmore, B.S.; Gylling, M.; Pedersen, J.L. Adoption and perspectives of precision farming in Denmark. Acta Agric. Scand. Sect. B 2010, 54, 2–8. [Google Scholar]
- Takács, I.; Baranyai, Z. Role of trust in cooperation of farmers from the aspect of new institutional economics. Ann. Pol. Assoc. Agric. Agribus. Econ. 2010, 6, 179–184. [Google Scholar]
- Takács, I. Gépkör—Jó alternatíva (Machinery rings—Good alternative)? Gazdálkodás 2000, 44, 44–55. [Google Scholar]
- Baranyai, Z.; Szabó, G.G.; Vásáry, M. Analysis of machine use in Hungarian agriculture—Is there any future for machinery sharing arrangements? Ann. Pol. Assoc. Agric. Agribus. Econ. 2014, 16, 24–30. [Google Scholar]
- Baranyai, Z.; Takács, I. Characteristics of machine utilization of plant production farms in Hungary. Hung. Agric. Eng. 2008, 21, 35–37. [Google Scholar]
- Szabó, G.G. “Cooperative identity”: A theoretical concept for economic analysis of the dynamics. Stud. Agric. Econ. 2006, 105, 5–22. [Google Scholar]
- Bakucs, L.Z.; Fertő, I.; Szabó, G.G. The Impact of Trust on Cooperative Membership Performance and Satisfaction in the Hungarian Horticulture. In Proceedings of the 104th Seminar, European Association of Agricultural Economists, Budapest, Hungary, 5–8 September 2007; pp. 382–392.
- Szabó, G.G. Szövetkezetek az Élelmiszergazdaságban (Cooperatives in Agribusiness); Agroinform Kiadó: Budapest, Hungary, 2011; p. 256. [Google Scholar]
- László, F.; Szilvia, E.K.-G. Boosting the competitiveness of agricultural production in Hungary through an innovation system. Stud. Agric. Econ. 2012, 114, 106–110. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovation; Free Press: New York, NY, USA, 1962. [Google Scholar]
- Takács-György, K. Economic aspects of an agricultural innovation—Precision crop production. Appl. Stud. Agribus. Commer. 2012, 6, 51–57. [Google Scholar]
- Takács-György, K.; Lencsés, E.; Takács, I. Economic benefits of precision weed control and why its uptake is so slow. Stud. Agric. Econ. 2013, 115, 40–46. [Google Scholar] [CrossRef]
- Csizmadia, Z. Együttműködés és Újítóképesség: Kapcsolati Hálózatok és Innovációs Rendszerek Regionális Sajátosságai (Cooperation and Ability for Renewing. Regional Characteristics of Networks); Napvilág Kiadó: Budapest, Hungary, 2009; p. 254. [Google Scholar]
- Griffin, T.W.; Lowenberg-DeBoer, J.; Lambert, D.M.; Peone, J.; Payne, T.; Daberkow, S.G. Adoption, Profitability, and Making Better Use of Precision Farming Data; Purdue University: West Lafayette, IN, USA, 2004; p. 20. [Google Scholar]
- Kalmár, S. Új Mezőgazdasági Technológiák Üzemgazdasági Értékelése, az Optimális Üzemméret Kialakítása Tükrében (Evaluation of New Agricultural Technologies in the Mirror of Optimal Farm Sizes). Ph.D. Thesis, West-Hungarian University, Mosonmagyaróvár, Hungary, June 2010; p. 121. [Google Scholar]
- Kutter, T.; Tiemann, S.; Siebert, R.; Fountas, M. The role of communication and co-operation in the adoption of precision farming. Precis. Agric. 2011, 12, 2–17. [Google Scholar]
- Attanandana, T.; Yost, R.; Verapattananirund, P. Empowering farmer leaders to acquire and practice site-specific nutrient management technology. J. Sustain. Agric. 2007, 30, 87–104. [Google Scholar] [CrossRef]
- Takács, I. Szempontok a Műszaki-fejlesztési Támogatások Közgazdasági Hatékonyságának Méréséhez (Aspects of measuring the economic efficiency of subsidies for improving technical development). In Műszaki Fejlesztési Támogatások Közgazdasági Hatékonyságának Mérése; Takács, I., Ed.; Szent István Egyetemi Kiadó: Gödöllő, Hungary, 2008; pp. 9–48. [Google Scholar]
- Magda, S.; Dinya, L.; Magda, R. Innováció és Kutatás-Fejlesztés (Innovation and R&D). Magyar Tudomány 2008, 169, 192–203. [Google Scholar]
- Nábrádi, A. Role of innovations and knowledge—Infrastructure and institutions. In Proceedings of the 113th Seminar, European Association of Agricultural Economists, Belgrade, Serbia, 9–11 December 2009.
- Székely, C.; Kovács, A.; Györök, B. The practice of precision farming from an economic point of view. Gazdálkodás 2000, 13, 56–65. [Google Scholar]
- Sajtos, L.; Mitev, A. SPSS Kutatási és Adatelemzési Kézikönyv; Alinea Kiadó: Budapest, Hungary, 2007. [Google Scholar]
- Takács-György, K.; Györök, B.; Kovács, A. The effects of precision farming on the use of chemicals. In Proceedings of the Xth Congress of the EAAE, Zaragoza, Spain, 28–31 August 2002; pp. 1–8.
- Lencsés, E. Different investment possibilities of precision farming technology in Hungary. In Modern Management in the 21st Century—Theoretical and Practical Issues; Ubreziová, I., Horska, E., Eds.; Slovak University of Agriculture: Nitra, Slovakia, 2013; pp. 208–220. [Google Scholar]
- Daberkow, S.; McBride, W. Farm and operator characteristics affecting the awareness and adoption of precision farming agriculture technologies in the US. Precis. Agric. 2003, 4, 163–177. [Google Scholar] [CrossRef]
- Timmermann, C.; Gerhards, R.; Krohmann, P.; Kühbauch, W. The economic impact of site specific weed control. Precis. Agric. 2003, 4, 249–260. [Google Scholar] [CrossRef]
- Jensen, H.G.; Jacobsen, L.; Pedersen, S.M.; Tavella, L. Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark. Precis. Agric. 2012, 13, 661–677. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lencsés, E.; Takács, I.; Takács-György, K. Farmers’ Perception of Precision Farming Technology among Hungarian Farmers. Sustainability 2014, 6, 8452-8465. https://doi.org/10.3390/su6128452
Lencsés E, Takács I, Takács-György K. Farmers’ Perception of Precision Farming Technology among Hungarian Farmers. Sustainability. 2014; 6(12):8452-8465. https://doi.org/10.3390/su6128452
Chicago/Turabian StyleLencsés, Enikő, István Takács, and Katalin Takács-György. 2014. "Farmers’ Perception of Precision Farming Technology among Hungarian Farmers" Sustainability 6, no. 12: 8452-8465. https://doi.org/10.3390/su6128452
APA StyleLencsés, E., Takács, I., & Takács-György, K. (2014). Farmers’ Perception of Precision Farming Technology among Hungarian Farmers. Sustainability, 6(12), 8452-8465. https://doi.org/10.3390/su6128452