Energy Efficiency and Energy Saving Potential in China: A Directional Meta-Frontier DEA Approach
Abstract
:1. Introduction
Indicators | Definition | Advantages | Disadvantages |
---|---|---|---|
Thermodynamic | Energy output (J)/ Energy input (J) | Convenient for analyzing a specific process of the energy usage | Fails to embody the end-use of energy usage, and to achieve a macro-aggregation |
Thermodynamic-physical | Energy usage (J)/ Energy service (physical unit) | Able to reflect directly the terminal service needed by energy consumers | Applicable only to a specific type of product, and relatively difficult in aggregating between different departments |
Thermodynamic-economic | Energy usage (J)/ Energy service (monetary unit) | Able to measure the energy efficiencies at different levels (e.g. enterprise, industry and nation) | Fails to measure the potential technical efficiency of energy, and some non-efficiency factors may cause numerical changes |
Economic | Energy usage (monetary unit)/ Energy service (monetary unit) | Able to reflect the economic productivity of energy and provide information on energy prices | Fails to measure the energy prices with an ideal price due to the constant price changes |
2. Methodology
2.1. Directional Distance Function
2.2. Energy Efficiency Indicator
2.3. Heterogeneity of Production Technology and Energy Efficiency
3. Empirical Analysis and Discussion
3.1. Data Sources and Group Formulation
East (Group 1) | Central (Group 2) | West (Group 3) | All | ||
---|---|---|---|---|---|
Input | Capital Stock(billion CNY) | 679.5 | 328.1 | 210.6 | 420.9 |
Labor (million) | 24.9 | 27.5 | 19.5 | 23.8 | |
Energy(million tons) | 121.5 | 89.2 | 65.8 | 93.4 | |
Output | GDP(billion CNY) | 1062.8 | 576.6 | 334.5 | 677.5 |
3.2. The Differences of Energy Efficiency
Province | GEE | MEE | Province | GEE | MEE |
---|---|---|---|---|---|
East | 0.777 | 0.773 | Heilongjiang | 0.829 | 0.585 |
Central | 0.755 | 0.547 | Anhui | 0.990 | 0.712 |
West | 0.662 | 0.462 | Jiangxi | 0.889 | 0.641 |
Beijing | 0.799 | 0.799 | Henan | 0.705 | 0.508 |
Tianjin | 0.754 | 0.754 | Hubei | 0.703 | 0.511 |
Hebei | 0.389 | 0.387 | Hunan | 0.798 | 0.573 |
Liaoning | 0.987 | 0.947 | Inner Mongolia | 0.623 | 0.379 |
Shanghai | 0.833 | 0.833 | Guangxi | 0.946 | 0.599 |
Jiangsu | 0.785 | 0.785 | Chongqing | 0.854 | 0.511 |
Zhejiang | 0.769 | 0.769 | Guizhou | 0.424 | 0.327 |
Fujian | 0.967 | 0.967 | Yunnan | 0.967 | 0.967 |
Shandong | 0.537 | 0.536 | Shaanxi | 0.778 | 0.478 |
Guangdong | 0.906 | 0.906 | Gansu | 0.539 | 0.330 |
Hainan | 0.827 | 0.827 | Qinghai | 0.439 | 0.352 |
Shanxi | 0.428 | 0.368 | Ningxia | 0.368 | 0.315 |
Jilin | 0.698 | 0.478 | Sinkiang | 0.683 | 0.363 |
Null Hypothesis | U-Statistics | Z-Statistics | p-Value | |
---|---|---|---|---|
East | The center position of two population distributions is same | 59.000 | −0.099 | 0.921 |
Central | 10.000 | −2.310 | 0.021 | |
West | 20.500 | −2.231 | 0.026 |
3.3. The Technology Gap of Energy Efficiency
Null Hypothesis | H-Statistics | p-Value |
---|---|---|
The center position of the three population distributions is the same. | 18.181 | 0.000 |
3.4. The Decomposition of Energy Intensity
Province | AEI | GEI | MEI | ΔEI | ΔEI1 | ΔEI2 | Policy priority |
---|---|---|---|---|---|---|---|
(tons of standard coal/ten thousand CNY) | |||||||
Beijing | 0.902 | 0.740 | 0.740 | 0.162 | 0.162 | 0.000 | M |
Tianjin | 1.151 | 0.920 | 0.920 | 0.231 | 0.231 | 0.000 | M |
Hebei | 2.099 | 0.853 | 0.828 | 1.271 | 1.246 | 0.025 | M |
Liaoning | 1.605 | 1.588 | 1.542 | 0.063 | 0.017 | 0.045 | T |
Shanghai | 0.917 | 0.781 | 0.781 | 0.136 | 0.136 | 0.000 | M |
Jiangsu | 0.951 | 0.749 | 0.749 | 0.202 | 0.202 | 0.000 | M |
Zhejiang | 0.977 | 0.764 | 0.764 | 0.213 | 0.213 | 0.000 | M |
Fujian | 0.862 | 0.832 | 0.832 | 0.030 | 0.030 | 0.000 | M |
Shandong | 1.448 | 0.812 | 0.788 | 0.660 | 0.636 | 0.024 | M |
Guangdong | 0.823 | 0.754 | 0.754 | 0.069 | 0.069 | 0.000 | M |
Hainan | 0.915 | 0.764 | 0.764 | 0.151 | 0.151 | 0.000 | M |
Shanxi | 2.966 | 1.235 | 1.162 | 1.804 | 1.731 | 0.073 | M |
Jilin | 1.612 | 1.160 | 0.786 | 0.827 | 0.452 | 0.374 | M&T |
Heilongjiang | 1.356 | 1.157 | 0.809 | 0.547 | 0.200 | 0.348 | T&M |
Anhui | 1.280 | 1.269 | 0.914 | 0.366 | 0.010 | 0.356 | T |
Jiangxi | 1.129 | 1.019 | 0.737 | 0.392 | 0.109 | 0.283 | T&M |
Henan | 1.520 | 1.084 | 0.780 | 0.740 | 0.437 | 0.304 | M&T |
Hubei | 1.554 | 1.115 | 0.809 | 0.745 | 0.439 | 0.306 | M&T |
Hunan | 1.384 | 1.099 | 0.792 | 0.592 | 0.285 | 0.307 | T&M |
Inner Mongolia | 2.784 | 1.881 | 1.058 | 1.726 | 0.903 | 0.823 | M&T |
Guangxi | 1.292 | 1.227 | 0.777 | 0.515 | 0.065 | 0.451 | T |
Sichuan | 1.523 | 1.333 | 0.790 | 0.733 | 0.190 | 0.543 | T |
Guizhou | 3.406 | 1.478 | 1.131 | 2.276 | 1.929 | 0.347 | M |
Yunnan | 1.766 | 1.703 | 1.703 | 0.063 | 0.063 | 0.000 | M |
Shanxi | 1.577 | 1.249 | 0.760 | 0.817 | 0.328 | 0.489 | T&M |
Gansu | 2.307 | 1.268 | 0.773 | 1.534 | 1.039 | 0.495 | M&T |
Qinghai | 3.269 | 1.428 | 1.165 | 2.104 | 1.841 | 0.263 | M&T |
Ningxia | 4.314 | 1.492 | 1.320 | 2.994 | 2.823 | 0.172 | M |
Xinjiang | 2.354 | 1.705 | 0.862 | 1.492 | 0.649 | 0.842 | T&M |
3.5. The Potential of Energy Savings
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Patterson, M.G. What is energy efficiency? Concepts, indicators and methodological issues. Energ. Policy 1996, 24, 377–390. [Google Scholar] [CrossRef]
- Zhang, M.; Li, H.; Zhou, M.; Mu, H. Decomposition analysis of energy consumption in Chinese transportation sector. Appl. Energ. 2011, 88, 2279–2285. [Google Scholar] [CrossRef]
- Ang, B.W. Monitoring changes in economy-wide energy efficiency: From energy-GDP ratio to composite efficiency index. Energ. Policy 2006, 34, 574–582. [Google Scholar] [CrossRef]
- Choi, K.H.; Ang, B.W. Attribution of changes in Divisia real energy intensity index: An extension to index decomposition analysis. Energ. Econ. 2012, 34, 171–176. [Google Scholar] [CrossRef]
- Ramanathan, R. Combining indicators of energy consumption and CO2 emissions: a cross-country comparison. Int. J. Global Energ. Issues 2002, 17, 214–227. [Google Scholar]
- Zhang, N.; Choi, Y. Environmental energy efficiency of China’s regional economies: A non-oriented slacks-based measure analysis. Soc. Sci. J. 2013, 50, 225–234. [Google Scholar] [CrossRef]
- Ghali, K.H.; El-Sakka, M.I. Energy use and output growth in Canada: A multivariate cointegration analysis. Energ. Econ. 2004, 26, 225–238. [Google Scholar] [CrossRef]
- Hu, J.L.; Wang, S.C. Total-factor Energy Efficiency of Regions in China. Energ. Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Hu, J.L.; Kao, C.H. Efficient energy-saving targets for APEC economies. Energ. Policy 2007, 35, 373–382. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W. Linear programming models for measuring economy-wide energy efficiency performance. Energ. Policy 2008, 36, 2911–2916. [Google Scholar] [CrossRef]
- Wu, F.; Fan, L.W.; Zhou, P.; Zhou, D.Q. Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis. Energ. Policy 2012, 49, 164–172. [Google Scholar] [CrossRef]
- Honma, S.; Hu, J.L. Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis. Appl. Energ. 2014, 119, 67–78. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zeng, H.L.; Wei, Y.M.; Zhang, Y.X. Regional total factor energy efficiency: An empirical analysis of industrial sector in China. Appl. Energ. 2012, 97, 115–123. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Zhou, D.Q. Measuring economy-wide energy efficiency performance: A parametric frontier approach. Appl. Energ. 2012, 90, 196–200. [Google Scholar] [CrossRef]
- Lin, B.; Du, K. Technology gap and China’s regional energy efficiency: A parametric metafrontier approach. Energ. Econ. 2013, 40, 529–536. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Wang, H. Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach. Eur. J. Oper. Res. 2012, 221, 625–635. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, P.; Choi, Y. Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance function analysis. Energ. Policy 2013, 56, 653–662. [Google Scholar] [CrossRef]
- Hayami, Y.; Ruttan, V. Agricultural development: An international perspective. J. Econ. Hist. 1973, 33, 484–487. [Google Scholar]
- O’Donnell, C.J.; Rao, D.S.P.; Battese, G.E. Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empir. Econ. 2008, 34, 231–255. [Google Scholar]
- Oh, D.H. A metafrontier approach for measuring an environmentally sensitive productivity growth index. Energ. Econ. 2010, 32, 146–157. [Google Scholar] [CrossRef]
- Lin, C.H.; Chiu, Y.H.; Huang, C.W. Assessment of technology gaps of tourist hotels in productive and service processes. Serv. Ind. J. 2012, 32, 2329–2342. [Google Scholar] [CrossRef]
- Battese, G.E.; Rao, D.S.P.; O’Donnell, C.J. A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. J. Productivity Anal. 2004, 21, 91–103. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China (NBSC). China Energy Statistical Year Book; China Statistics Press: Beijing, China, 2002–2012. [Google Scholar]
- National Bureau of Statistics of China (NBSC). China Statistical Year Book; China Statistics Press: Beijing, China, 2002–2011. [Google Scholar]
- Shan, H.J. Re-estimating the capital stock of China: 1952–2006. Q. Tech. Econ. 2008, 10, 17–31. (In Chinese) [Google Scholar]
- Wang, Q.; Zhao, Z.; Zhou, P.; Zhou, D. Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach. Econ. Model 2013, 35, 283–289. [Google Scholar] [CrossRef]
- Tulkens, H.; Vanden, E.P. Non-parametric efficiency, progress, and regress measure for panel data: Methodological aspects. Eur. J. Oper. Res. 1995, 80, 472–479. [Google Scholar] [CrossRef]
- Wei, C.; Ni, J.; Shen, M. Empirical analysis of provincial energy efficiency in China. China World Econ. 2009, 17, 88–103. [Google Scholar] [CrossRef]
- Chiu, C.R.; Liou, J.L.; Wu, P.I.; Fang, C.L. Decomposition of the environmental inefficiency of the meta-frontier with undesirable output. Energ. Econ. 2012, 34, 1392–1399. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, Q.; Zhou, P.; Zhao, Z.; Shen, N. Energy Efficiency and Energy Saving Potential in China: A Directional Meta-Frontier DEA Approach. Sustainability 2014, 6, 5476-5492. https://doi.org/10.3390/su6085476
Wang Q, Zhou P, Zhao Z, Shen N. Energy Efficiency and Energy Saving Potential in China: A Directional Meta-Frontier DEA Approach. Sustainability. 2014; 6(8):5476-5492. https://doi.org/10.3390/su6085476
Chicago/Turabian StyleWang, Qunwei, Peng Zhou, Zengyao Zhao, and Neng Shen. 2014. "Energy Efficiency and Energy Saving Potential in China: A Directional Meta-Frontier DEA Approach" Sustainability 6, no. 8: 5476-5492. https://doi.org/10.3390/su6085476
APA StyleWang, Q., Zhou, P., Zhao, Z., & Shen, N. (2014). Energy Efficiency and Energy Saving Potential in China: A Directional Meta-Frontier DEA Approach. Sustainability, 6(8), 5476-5492. https://doi.org/10.3390/su6085476