A Novel Approach for the Removal of Lead(II) Ion from Wastewater Using Mucilaginous Leaves of Diceriocaryum eriocarpum Plant
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Adsorbent
2.2. Instrumentation
2.3. Validation of Analytical Methods
2.4. Preparation of Solution
2.5. Batch Adsorption Studies
2.6. Desorption Studies
3. Results and Discussion
3.1. Infra-Red Spectroscopy Results
3.2. Morphology and Textural Examination of the Adsorbent
Component | % Composition | Component | % Composition |
---|---|---|---|
Na2O | 1.17 | K2O | 11.7 |
MgO | 6.93 | CaO | 23.9 |
Al2O3 | 6.15 | TiO2 | 1.33 |
SiO2 | 23.6 | MnO | 0.778 |
P2O5 | 2.42 | Fe2O3 | 12.8 |
SO3 | 5.68 | SrO | 1.24 |
Cl | 1.09 | BaO | 0.521 |
Physical Parameters | Result Obtained |
---|---|
BET surface area (m2/g) | 1.8517 |
Micropore surface area (m2/g) | 1.6061 |
Total pore volume (cm³/g) | 0.008244 |
Micropore volume (cm³/g) | 0.008055 |
Average pore diameter (Ao or 10−8 cm) | 163.104 |
3.3. Effect of Adsorbent Dosage
3.4. Effect of Contact Time
3.5. Effect of pH
3.6. Adsorption Isotherms
Adsorption Isotherm | Parameter | Value |
---|---|---|
Langmuir | qmax (mg/g) | 41.49 |
b | 0.02 | |
R2 | 0.9661 | |
RL | 0.82 | |
Freundlich | Kf | 0.860 |
n | 0.909 | |
R2 | 0.9547 |
Adsorbent | Maximum Adsorption Capacity (mg/g) | References |
---|---|---|
Activated carbon (AC) Phaseolus aureus hulls | 21.80 | [47] |
Natural maize tassels | 1.7 | [16] |
Acid treated maize tassels | 37.31 | [15] |
Hazelnut shell | 28.18 | [48] |
Saw dust of Pinus Sylvestris | 22.22 | [49] |
Nitric acid treated peanut shell AC | 35.5 | [50] |
Peels of banana | 5.71 | [51] |
Tea waste | 65 | [52] |
Mucilaginous leaves of DEP | 41.49 | This study |
3.7. Adsorption Reaction Based Models
3.8. Mechanism Based Model
3.9. Treatment of Real Wastewater Samples
3.10. Desorption Studies
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mwangi, I.W.; Ngila, J.C.; Okonkwo, J.O. A comparative study of modified and unmodified maize tassels for the removal of selected trace metals in contaminated water. Toxicol. Environ. Chem. 2012, 94, 20–39. [Google Scholar] [CrossRef]
- Mihajlovic, M.T.; Lazarevic, S.S.; Jankovic-Castvan, I.M.; Kovac, J.; Jokic, B.M.; Janackovic, D.T.; Petrovic, R.D. Kinetics, thermodynamics, and structural investigations on the removal of Pb2+, Cd2+, and Zn2+ from multicomponent solutions onto natural and Fe(III)-modified zeolites. Clean Technol. Environ. Policy 2015, 14, 407–419. [Google Scholar] [CrossRef]
- Yu, J.G.; Zhao, X.H.; Yu, L.Y.; Jiao, F.P.; Jiang, J.H.; Chen, X.Q. Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes. J. Radioanal. Nucl. Chem. 2014, 299, 1155–1163. [Google Scholar] [CrossRef]
- Hernandez-Montoya, V.; Perez-Cruz, M.A; Mendoza-Casillo, D.I.; Moreno-Virgen, M.R.; Bonilla-Petriciolet, A. Competitive adsorption of dyes and heavy metals on zeolitic structure. J. Environ. Manag. 2013, 116, 213–221. [Google Scholar] [CrossRef] [PubMed]
- EPA, Toxicity and priority pollutants 2014. Available online: http://water.epa-gov/scitech/methods/cwa/pollutants-background.cfm (accessed on 10 April 2014).
- Monachese, M.; Burton, J.P.; Reida, G. Bioremediation and tolerance of humans to heavy metals through microbial processes: A potential role for probiotics. Appl. Environ. Microbiol. 2012, 78, 6397–6404. [Google Scholar] [CrossRef]
- WHO. Lead poisoning and health. 2013. Available online: http//www.Who.int/mediacentre/facesheet/FS379/en (accessed on 4 October 2014).
- US EPA. Human health and lead. 2013. Available online: http//www.epa.gov/superfund/lead/health.htm (accessed on 4 October 2014). [Google Scholar]
- Lingamdinne, L.P.; Koduru, J.R.; Jyothi, R.K.; Chang, Y.; Yang, J. Factors affect on bioremediation of Co(II) and Pb(II) onto Lonicera japonica flowers powder. Desalination Water Treat. 2015. [Google Scholar] [CrossRef]
- Fatima, T.; Nadeem, R.; Masood, A.; Saeed, R.; Ashraf, M. Sorption of lead by chemically modified rice bran. Int. J. Environ. Sci. Technol. 2013, 10, 1255–1264. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Ramteke, D.S.; Wate, R.A. Physico-chemical and surface characterization of adsorbent prepared from groundnut shell by ZnCl2 activation and its ability to adsorb colour. Indian J. Chem. Technol. 2006, 13, 319–328. [Google Scholar]
- Das, N.; Karthiica, P.; Vimala, R.; Vinidhini, V. Use of natural products as biosorbent of heavy metals, an overview. Nat. Prod. Radiance 2008, 7, 133–138. [Google Scholar]
- Gavrilescu, M. Removal of Heavy Metals from the Environment by Biosorption. Eng. Life Sci. 2004, 4, 219–232. [Google Scholar] [CrossRef]
- Moyo, M.; Chikazaza, L. Bioremediation of lead(II) from polluted wastewaters employing sulphuric acid treated maize tassel biomass. Am. J. Anal. Chem. 2013, 4, 689–695. [Google Scholar] [CrossRef]
- Olorundare, O.F.; Krause, R.W.M.; Okonkwo, J.O.; Mamba, B.B. Potential application of activated carbon from maize tassel for the removal of heavy metals in water. Phys. Chem. Earth 2012. [Google Scholar] [CrossRef]
- Banerjee, K.; Ramesh, S.T.; Gandhimathi, R.; Nidheesh, P.V.; Bharathi, K.S. Novel agricultural waste adsorbent, watermelon shell for the removal of copper from aqueous solutions. Iran. J. Energy Environ. 2012, 3, 143–156. [Google Scholar] [CrossRef]
- Katsuya, K.; Hoaki, K.; Sunada, H.; Prasad, D.R.; Baba, Y. Removal characteristics of metal ions using degreased coffee beans: Adsorption equilibrium of cadmium (II). Bioresour Technol. 2007, 98, 2787–2791. [Google Scholar]
- Amuda, O.S.; Giwa, A.; Bello, I.A. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem. Eng. J. 2007, 36, 174–181. [Google Scholar] [CrossRef]
- Witek-Krowiak, A.; Szafran, R.G.; Modelski, S. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination 2011, 265, 126–134. [Google Scholar] [CrossRef]
- Isaac, C.P.J.; Sivakumar, A. Removal of lead and cadmium ions from water using Annona squamosa shell: Kinetic and equilibrium studies. Desalination Water Treat. 2013, 51, 7700–7709. [Google Scholar] [CrossRef]
- Ghorbani, M.; Eisazadeh, H.; Ghoreyshi, A.A. Removal of zinc ions from aqueous solution using polyaniline nanocomposite coated on rice husk. Iran J. Energy Environ. 2012, 3, 83–88. [Google Scholar] [CrossRef]
- Feng, N.X.; Guoa, X.; Lianga, S.; Zhub, Y.; Liu, J. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J. Hazard. Mater. 2011, 185, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Elizalde-Gonzalez, M.P.; Mattusch, J.; Pelaez-cid, A.A.; Wennrich, R. Characterization of adsorbent materials prepared from avocado kernel seeds: Natural, activated and carbonized forms. J. Anal. Appl. Pyrolysis 2007, 78, 185–193. [Google Scholar] [CrossRef]
- Fox, D.; Thomas, P.; Daniel, H.; Norma, A. Removing heavy metals in water: The Interaction of Cactus Mucilage and Arsenate (As (V)). Environ. Sci. Technol. 2012, 46, 4553–4559. [Google Scholar] [CrossRef] [PubMed]
- Gupte, A.; Karjikar, M.; Nair, J. Biosorption of copper using mucilaginous seeds of Ocimum basilicum. Acta Biol. Indica 2012, 1, 113–119. [Google Scholar]
- Maji, S.; Mallick, S.K.; Basu, S. Biosorption of Cesium-137 by mucilaginous seeds of Ocimum gratissium Linn. Int. J. Basic Appl. Sci. 2014, l3, 139–141. [Google Scholar]
- Zvinowanda, C.M.; Okonkwo, O.J.; Sekhula, M.M.; Agyei, N.M.; Sadiki, R. Application of maize tassel for removal of Pb, Se, Sr, U and V from borehole water contaminated with waste water in the presence of alkaline metals. J. Hazard. Mater. 2009, 164, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, H.Z.; Hosseynifar, A.; Jahed, V.; Dehghani, S.A.M. Removal of lead from aqueous solution using waste tire rubber ash as an adsorbent. Braz. J. Chem. Eng. 2010, 27, 79–87. [Google Scholar] [CrossRef]
- Creed, J.T.; Martin, T.D.; O’Dell, J.W. Determination of Trace Elements by Stabilized Temperature Graphite Furnace Atomic Absorption. Available online: http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_07_10_methods_method_200_9.pdf (accessed on 2 May 2014).
- Khambhaty, Y.; Mody, K.; Basha, S.; Jha, B. Biosorption of Cr (VI) onto marine Aspergillus niger: Experimental studies and pseudo-second order kinetics. World J. Microbiol. Biotechnol. 2009, 25, 1413–1421. [Google Scholar] [CrossRef]
- Nabarawy, T.; Petro, N.S.; Abdel-Aziz, S. Adsorption characteristics of coal-based activated carbons. II. Adsorption of water vapour, pyridine and benzene. Adsorp. Sci. Technol. 1997, 15, 47–57. [Google Scholar]
- Barone, G.; Corsaro, M.; Giannttasio, M.; Lanzetta, R.; Moscariello, M.; Parrilli, M. Structural investigation of the polysaccharide fraction from the mucilage of Dicerocaryum zanguebaricum. Merr. Carbohydr. Res. 1995, 280, 111–119. [Google Scholar] [CrossRef]
- Bhatti, H.; Mumtaz, B.; Muhammad, A.; Nadeem, R. Removal of Zn(II) ions from aqueous solution using Moringa oleifera Lam. (horseradish tree) biomass. Process Biochem. 2007, 42, 547–553. [Google Scholar] [CrossRef]
- Gilbert, A.; Emmanuel, I.; Adebanjo, A.; Olalere, G. Biosorptive removal of Pb2+ and Cd2+ onto novel biosorbent: defatted Carica papaya seeds. Biomass Bioenerg. 2011, 35, 2517–2525. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science & Technology; EarthScans Publishers: London, UK, 2009; pp. 1–12. [Google Scholar]
- Lingamdinne, L.P.; Roh, H.; Choi, Y.; Koduru, J.R.; Yang, J.; Chang, Y. Influencing factors on sorption of TNT and RDX using rice husk biochar. J. Ind. Eng. Chem. 2015. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; de Sousa Ribeiro, L.A.; Thim, G.P.; Ferreira, R.R.; Alvarez-Mendez, M.O.; dos Reis Coutinho, A. Activated carbon derived from macadamia nut shells: An effective adsorbent for phenol removal. J Porous Mater. 2013, 20, 619–627. [Google Scholar] [CrossRef]
- Junior, O.P.; Cazetta, A.L.; Gomes, C.L.; Barizao, E.O.; Souza, I.P.A.F.; Martine, A.C.; Asefa, T.; Almeida, V.C. Synthesis of ZnCl2-activated carbon from macademia nut endocarp (Macademia intergrifolia) by microwave-assisted pyrolysis: Optimization using RSM and methylene blue adsorption. J. Anal. Appl. Pyrolysis 2014, 105, 166–176. [Google Scholar] [CrossRef]
- Prato, A.M.; Valdman, E.; Leite, S.G.F.; Battaglini, F.; Ruzal, S.M. Biosorption of copper by Pacnibacillus polynyxa cell and their exopolysaccharide. World J. Microbiol. Biotechnol. 2005, 21, 1157–1163. [Google Scholar]
- Yang, K.; Peng, J.; Srinivasakannan, C.; Zhang, L.; Xia, H.; Duan, X. Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour. Technol. 2010, 101, 6161–6169. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, S.; Guo, X.; Huang, H. Adsorption of Cr(III) On lignin. Bioresour. Technol. 2008, 99, 7709–7715. [Google Scholar] [CrossRef] [PubMed]
- Fourest, E.; Serre, A. Contribution of carboxy groups to heavy metal binding sites in fungal wall. Toxicol. Environ. Chem. 1996, 54, 1–10. [Google Scholar] [CrossRef]
- Abdus-Salam, N.; Itiola, A.D. Potential application of termite mould for adsorption and removal of Pb (II) from aqueous solutions. J. Iran Chem. Soc. 2012, 9, 373–382. [Google Scholar] [CrossRef]
- Gupta, V.K.; Shrivastava, A.K.; Jain, N. Biosorption of chromium (VI) from aqueous solutions by green algae spirogyra species. Water Res. 2001, 35, 4079–4090. [Google Scholar] [CrossRef]
- Olorundare, O.F.; Msagati, T.A.M.; Krause, R.W.M.; Okonkwo, J.O.; Mamba, B.B. Steam activation, characterization and adsorption studies of activated carbon from maize tassels. Chem Ecol. 2014, 30, 473–490. [Google Scholar] [CrossRef]
- Rao, M.M.; Ramesh, A.; Purna, G.; Rao, C.; Seshaiah, K. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J. Hazard. Mater. 2006, 129, 123–129. [Google Scholar] [PubMed]
- Pehlivan, E.; Altun, T.; Cetin, S.; Bhanger, M.I. Lead sorption by waste biomass of hazelnut and almond shell. J. Hazard. Mater. 2009, 167, 1203–1208. [Google Scholar] [CrossRef] [PubMed]
- Taty-Costodes, V.C.; Fauduet, H.; Porte, C.; Delacroix, A. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J. Hazard. Mater. 2003, 105, 121–142. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Xiaoqin, L. Peanut Shell Activated Carbon: Characterization, Surface Modification and Adsorption of Pb2+ from Aqueous Solution. Chin. J. Chem. Eng. 2008, 16, 401–406. [Google Scholar]
- Anwar, J.; Shafique, U.; Waheed-uz-Zaman; Salman, M.; Dar, A.; Anwa, S. Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Bioresour. Technol. 2010, 101, 752–1755. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, B.M.W.P.K.; Williams, R.A. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 2007, 132, 299–309. [Google Scholar] [CrossRef]
- Qiu, H.; Lv, L.; Pan, B.; Zhang, Q.; Zhang, W.; Zhang, Q. Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A 2009, 10, 716–724. [Google Scholar] [CrossRef]
- Ahmad, R.; Kumar, R.; Laskar, M.A. Adsorptive removal of Pb2+ form aqueous solution by macrocyclic calyx[4]naphthalene: Kinetic, thermodynamic, and isotherm analysis. Environ. Sci. Pollut. Res. 2013, 20, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31–60. [Google Scholar]
- Olu-Owolabi, B.I.; Diagboya, P.N.; Adebowal, K.O. Evaluation of pyrene sorptionedesorption on tropical soils. J. Environ. Manag. 2014, 137, 1–9. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edokpayi, J.N.; Odiyo, J.O.; Msagati, T.A.M.; Popoola, E.O. A Novel Approach for the Removal of Lead(II) Ion from Wastewater Using Mucilaginous Leaves of Diceriocaryum eriocarpum Plant. Sustainability 2015, 7, 14026-14041. https://doi.org/10.3390/su71014026
Edokpayi JN, Odiyo JO, Msagati TAM, Popoola EO. A Novel Approach for the Removal of Lead(II) Ion from Wastewater Using Mucilaginous Leaves of Diceriocaryum eriocarpum Plant. Sustainability. 2015; 7(10):14026-14041. https://doi.org/10.3390/su71014026
Chicago/Turabian StyleEdokpayi, Joshua N., John O. Odiyo, Titus A. M. Msagati, and Elizabeth O. Popoola. 2015. "A Novel Approach for the Removal of Lead(II) Ion from Wastewater Using Mucilaginous Leaves of Diceriocaryum eriocarpum Plant" Sustainability 7, no. 10: 14026-14041. https://doi.org/10.3390/su71014026
APA StyleEdokpayi, J. N., Odiyo, J. O., Msagati, T. A. M., & Popoola, E. O. (2015). A Novel Approach for the Removal of Lead(II) Ion from Wastewater Using Mucilaginous Leaves of Diceriocaryum eriocarpum Plant. Sustainability, 7(10), 14026-14041. https://doi.org/10.3390/su71014026