Costs and Benefits in the Recovery of Historic Buildings: The Application of an Economic Model
Abstract
:1. Conservation and Sustainability in Historic Buildings
2. A Protocol for the Selection of Compatible Interventions
3. Verification of the Model through a Case Study
3.1. Collecting and Analyzing Data for the Measurement of Energy Audits of the Building in its Current State
Climatic Zone | Data |
---|---|
Degrees Days DD | 1518 |
dispensing Surface S | 2646 m2 |
gross heated Volume V | 4400 m3 |
shape ratio S/V | 0.6 |
usable area | 751.1 m2 |
Power heating system P | 35 kW |
3.2. Processing of the Collected Data and Simulation of the Thermodynamic Behavior of the Building
- -
- EPwh = 77 kWh/m3;
- -
- EPsc = 56.72 kWh/m3;
- -
- EPgl = 77 kWh/m3.
3.3. Verification of the Energy Requirements and Calibration of the Model Parameters
3.4. Identification of Critical Points of the Building in Terms of the Energy-Performance Profile
3.5. Selection of Possible Energy Efficiency Interventions
- (a)
- increasing the energy casing performance, through insulation works on the bearing walls, insulation and waterproofing of roofs and replacement of fixtures;
- (b)
- replacement of incandescent lamps with LED installations;
- (c)
- replacement of tiles of pitched roofs with new-generation photovoltaic tiles;
- (d)
- replacement of the current heating system with a high efficiency tri-generation plant.
Material | Thickness (m) | Mass (kg/m2) | Resistance (m2K/W) | Conductance (W/mK) | |
---|---|---|---|---|---|
Outer surface | 0.043 | ||||
1 | Lime mortar or lime or cement | 0.015 | 27 | 0.016 | 0.09 |
2 | Solid bricks | 0.30 | 675 | 0.470 | 0.80 |
3 | Lime plaster and gypsum | 0.015 | 21 | 0.021 | 0.07 |
Inner surface | 0.125 |
Material | Thickness (m) | Mass (kg/m2) | Resistance (m2K/W) | Conductance (W/mK) | |
---|---|---|---|---|---|
Outer surface | 0.043 | ||||
1 | Thermal plaster | 0.05 | 360 | 1.111 | 0.045 |
2 | Solid bricks | 0.30 | 675 | 0.470 | 0.800 |
3 | Thermal plaster | 0.02 | 360 | 0.444 | 0.045 |
Inner surface | 0.125 |
Incandescence | LED | ||||
---|---|---|---|---|---|
Intervention | n. | Power Each | Total Power | Power Each | Total Power |
Interior lamps: wall sconce cylindrical | 16 | 60 W | 960 W | 10 W | 160 W |
Interior lamps: wall sconce in adjustable support | 81 | 60 W | 4860 W | 10 W | 810 W |
Outdoor lamps: markers for the terraces | 15 | 100 W | 1500 W | 20 W | 300 W |
Outdoor lamps: markers for the walls | 31 | 100 W | 3100 W | 20 W | 620 W |
Outdoor lamps: recessed, flush with the ground | 15 | 100 W | 1500 W | 20 W | 300 W |
Floodlight for architectural exterior lighting | 27 | 600 W | 16,200 W | 100 W | 2700 W |
Floodlight for lighting of the conference room at the ground floor | 1 | 800 W | 800 W | 120 W | 120 W |
Consumption | 29,000 W | 5010 W |
- -
- Twenty two upright, with potentiality total cooling (PC) ≥ 4.54 kW, air flow max (AF) = 800 m3/h, thermal capacity (TC) = 9.13 kW;
- -
- Thirty upright, with PC ≥ 7.27 kW, AF = 1250 m3/h, TC = 14.18 kW.
3.6. Definition of the Management Processes and the Search for Financial Support
3.7. Economic Evaluation of Possible Energetic Requalification Projects and Optimal Investment Choice
Intervention | Cost [€] |
---|---|
| 140,531.72 47,397.20 52,530.20 |
| 57,540.37 |
| 196,400.00 |
| 406,271.88 |
Total | 900,671.39 |
Technical costs | 90,067.14 |
Administrative costs | 45,033.57 |
Insurance costs | 27,020.14 |
Freight and transport | 5908.60 |
Total Works | 1,068,700.82 |
- -
- 150 €/year for the cleaning of the photovoltaic system;
- -
- 1000 € every 10 years to replace the inverter of the photovoltaic panels;
- -
- € 60,000 every 15 years to replace the tri-generation engine plant;
- -
- € 54,000 every 20 years to maintain the insulating plaster;
- -
- € 4000 every 15 years for the replacement of the LED lamps.
- -
- € 24,854/year, since the photovoltaic system covers the entire electricity production that amounts to 6000 W. The beginning of the 12th year for yield drops to 90% (5400 W), for 25 years down to 8% (4800 W), which also provides the building’s energy needs, while the 37th year, the performance becomes 70%, producing 4200 W, which results from the electricity supply with respect to the rate not covered by the photovoltaics;
- -
- € 31,750/year for the lower consumption of natural gas by the use of the tri-generation plant;
- -
- € 1750/year due to the lack of the routine maintenance costs of incandescent bulbs.
Year | COST (€) | Electricity Savings (€) | Methan Savings (€) | Maintenance Lamps Savings (€) | REVENUE (€) | Gross Tax Cash Flows (€) | IRAP (€) | Net Tax Cash Flows (€) | Discounted And Cumulative Cash Flows (€) |
---|---|---|---|---|---|---|---|---|---|
1 | −427,901 | −427,901 | −427,901 | −407,525 | |||||
2 | −150 | 24,854 | 31,750 | 1750 | 65,533 | 65,383 | 5558 | 59,825 | −353,261 |
3 | −150 | 24,854 | 31,750 | 1750 | 65,533 | 65,383 | 5558 | 59,825 | −301,582 |
4 | −150 | 24,854 | 31,750 | 1750 | 65,533 | 65,383 | 5558 | 59,825 | −252,364 |
5 | −150 | 24,854 | 31,750 | 1750 | 65,533 | 65,383 | 5558 | 59,825 | −205,489 |
6 | −150 | 24,854 | 31,750 | 1750 | 65,533 | 65,383 | 5558 | 59,825 | −160,847 |
7 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | −122,998 |
8 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | −86,952 |
9 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | −52,623 |
10 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | −19,928 |
11 | −1150 | 24,854 | 31,750 | 1750 | 58,354 | 57,204 | 4862 | 52,341 | 10,675 |
12 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 40,330 |
13 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 68,573 |
14 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 95,471 |
15 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 121,089 |
16 | −64,150 | 24,854 | 31,750 | 1750 | 58,354 | −5,796 | −5796 | 118,433 | |
17 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 141,669 |
18 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 163,798 |
19 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 184,873 |
20 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 204,945 |
21 | −55,150 | 24,854 | 31,750 | 1750 | 58,354 | 3204 | 272 | 2931 | 205,997 |
22 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 224,203 |
23 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 241,542 |
24 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 258,055 |
25 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 273,782 |
26 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 288,760 |
27 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 303,024 |
28 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 316,610 |
29 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 329,548 |
30 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 341,870 |
31 | −65.150 | 24,854 | 31,750 | 1750 | 58,354 | -6796 | −6796 | 340,373 | |
32 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 351,549 |
33 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 362,194 |
34 | −150 | 24,854 | 31,750 | 1750 | 58,354 | 58,204 | 4947 | 53,256 | 372,332 |
35 | −150 | 24,854 | 31,750 | 1750 | 906,811 | 906,661 | 4947 | 901,713 | 535,803 |
3.8. Estimate of Avoided CO2 Emissions and Environmental Benefits
- -
- CO2eq (before-intervention) = 15.50 kg/m3year,
- -
- CO2eq (after-intervention) = 2.76 kg/m3year.
Year | Cash Flow Gross Tax (€) | SCC (2011$/ton) | SCC (2015$/ton) | Total Saving SCC ($) | Total Saving SCC (€) | Cash Flows (€) | Discounted and Cumulative Cash Flows (€) |
---|---|---|---|---|---|---|---|
1 | −427,901 | 61.00 | 64.20 | −427,901 | −407,525 | ||
2 | 65,383 | 62.40 | 65.67 | 3683 | 3488 | 68,871 | −345,056 |
3 | 65,383 | 63.80 | 67.15 | 3765 | 3567 | 68,949 | −285,495 |
4 | 65,383 | 65.20 | 68.62 | 3848 | 3645 | 69,028 | −228,706 |
5 | 65,383 | 66.60 | 70.09 | 3931 | 3723 | 69,106 | −174,560 |
6 | 65,383 | 68.00 | 71.57 | 4013 | 3801 | 69,184 | −122,934 |
7 | 58,204 | 69.20 | 72.83 | 4084 | 3868 | 62,072 | −788,20 |
8 | 58,204 | 70.40 | 74.09 | 4155 | 3936 | 62,139 | −367,62 |
9 | 58,204 | 71.60 | 75.36 | 4226 | 4003 | 62,206 | 3337 |
10 | 58,204 | 72.80 | 76.62 | 4297 | 4070 | 62,273 | 41,567 |
11 | 57,204 | 74.00 | 77.88 | 4367 | 4137 | 61,341 | 77,432 |
12 | 58,204 | 75.20 | 79.14 | 4438 | 4204 | 62,408 | 112,183 |
13 | 58,204 | 76.40 | 80.41 | 4509 | 4271 | 62,475 | 145,314 |
14 | 58,204 | 77.60 | 81.67 | 4580 | 4338 | 62,542 | 176,902 |
15 | 58,204 | 78.80 | 82.93 | 4651 | 4405 | 62,609 | 207,018 |
16 | −5796 | 80.00 | 84.20 | 4722 | 4472 | −1324 | 206,412 |
17 | 58,204 | 81.00 | 85.25 | 4781 | 4528 | 62,732 | 233,781 |
18 | 58,204 | 82.00 | 86.30 | 4840 | 4584 | 62,788 | 259,871 |
19 | 58,204 | 83.00 | 87.35 | 4899 | 4640 | 62,844 | 284,740 |
20 | 58,204 | 84.00 | 88.41 | 4958 | 4696 | 62,900 | 308,447 |
21 | 3204 | 85.00 | 89.46 | 5017 | 4752 | 7955 | 311,302 |
22 | 58,204 | 86.40 | 90.93 | 5099 | 4830 | 63,034 | 332,850 |
23 | 58,204 | 87.80 | 92.40 | 5182 | 4908 | 63,112 | 353,398 |
24 | 58,204 | 89.20 | 93.88 | 5264 | 4987 | 63,190 | 372,991 |
25 | 58,204 | 90.60 | 95.35 | 5347 | 5065 | 63,269 | 391,674 |
26 | 58,204 | 92.00 | 96.82 | 5430 | 5143 | 63,347 | 409,490 |
27 | 58,204 | 93.20 | 98.09 | 5501 | 5210 | 63,414 | 426,475 |
28 | 58,204 | 94.40 | 99.35 | 5571 | 5277 | 63,481 | 442,669 |
29 | 58,204 | 95.60 | 100.61 | 5642 | 5344 | 63,548 | 458,108 |
30 | 58,204 | 96.80 | 101.88 | 5713 | 5411 | 63,615 | 472,827 |
31 | −6,796 | 98.00 | 103.14 | 5784 | 5478 | −1318 | 472,536 |
32 | 58,204 | 99.20 | 104.40 | 5855 | 5546 | 63,749 | 485,915 |
33 | 58,204 | 100.40 | 105.67 | 5926 | 5613 | 63,816 | 498,670 |
34 | 58,204 | 101.60 | 106.93 | 5996 | 5680 | 63,883 | 510,831 |
35 | 906,661 | 102.80 | 108.19 | 6067 | 5747 | 912,408 | 676,242 |
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Fusco Girard, L. Verso una nuova economia della conservazione del patrimonio artistico edificato. In Economia del Patrimonio Monumentale; Mossetto, G., Vecco, M., Eds.; FrancoAngeli: Milano, Italy, 2001. (In Italian) [Google Scholar]
- Khasreen, M.M.; Banfill, P.F.G.; Menzies, G.F. Life-Cycle Assessment and the Environmental Impact of Buildings: A Review. Sustainability 2009, 1, 674–701. [Google Scholar] [CrossRef]
- Ronchi, A. Edificato storico e comunità locali: La partecipazione come strategia di conservazione preventiva. In Pensare la Prevenzione: Manufatti, Usi, Ambienti. Atti del Convegno di Bressanone “Scienza e Beni culturali”; Arcadia Ricerche: Venezia, Italy, 2010. (In Italian) [Google Scholar]
- Della Torre, S. La Conservazione Programmata: Una Strategia per il Patrimonio Storico Architettonico; Guerini: Milano, Italy, 2003. (In Italian) [Google Scholar]
- Pisello, A.L.; Petrozzi, A.; Castaldo, V.L.; Cotana, F. Energy Refurbishment of Historical Buildings with Public Function: Pilot Case Study; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- De Lieto Vollaro, R.; Guattari, C.; Evangelisti, L.; Battista, G.; Carnielo, E.; Gori, P. Building Energy Performance Analysis: A Case Study. In Energy and Buildings; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Paoletti, D.; Ambrosini, D.; Sfarra, S.; Bisegna, F. Preventive thermographic diagnosis of historical buildings for consolidation. J. Cult. Herit. 2013, 14, 116–121. [Google Scholar] [CrossRef]
- Adhikari, R.S.; Longo, E.; Pracchi, V.; Rogora, A.; Rosina, E.; Schippa, G. Energy behaviour in historical buildings: Limits and potentials for the project evaluation. In Proceedings of the PLEA 2011—27th Conference on Passive and Low Energy Architecture, Louvain-la-Neuve, Belgium, 13–15 July 2011; pp. 515–520.
- Cecchi, R.; Gasparoli, P. Prevenzione e Manutenzione per i Beni Culturali Edificati: Procedimenti Scientifici per lo Sviluppo Delle Attività Ispettive. Il Caso Studio Delle Aree Archeologiche di Roma e Ostia Antica; Alinea: Firenze, Italy, 2010. (In Italian) [Google Scholar]
- De Mare, G.; Granata, M.F.; Nesticò, A. Complex efficiency of sports facilities. Multicriteria and financial analysis for swimming pools. In Advances in Environmental and Geological Science and Engineering, Proceedings of the 8th International Conference on Environmental and Geological Science and Engineering (EG’15), Salerno, Italy, 27–29 June 2015; WSEAS Press: Athens, Greece, 2015; pp. 96–103. [Google Scholar]
- Nesticò, A.; De Mare, G.; Fiore, P.; Pipolo, O. A Model for the Economic Evaluation of Energetic Requalification Projects in Building. A real case application. In Computational Science and Its Applications—ICCSA 2014, Part II; Murgante, B., Misra, S., Rocha, A.M., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O., Eds.; Springer: Berlin, Germany; Heidelberg, Germany; Volume 8580, pp. 563–578.
- Rodwell, D. Conservation and Sustainability in Historic Cities; Blackwell Publishing: Oxford, UK, 2007. [Google Scholar]
- Syed, A. Advanced Building Technologies for Sustainability; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- De Vita, M. Historic Cities and Sustainability; Firenze University Press: Florence, Italy, 2012. [Google Scholar]
- Mjörnell, K.; Boss, A.; Lindahl, M.; Molnar, S. A Tool to Evaluate Different Renovation Alternatives with Regard to Sustainability. Sustainability 2014, 6, 4227–4245. [Google Scholar] [CrossRef]
- Nesticò, A.; Macchiaroli, M.; Pipolo, O. Historic buildings and energetic requalification. A model for the selection of technologically advanced interventions. In Computational Science and Its Applications—ICCSA 2015, Part III; Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M., Torre, C., Taniar, D., Apduhan, B.O., Eds.; Springer: Berlin, Germany; Heidelberg, Germany, 2015; Volume 9157, pp. 61–76. [Google Scholar]
- Narita, D.; Tol, R.S.J.; Anthoff, D. Economic costs of extratropical storms under climate change: An application of FUND. J. Environ. Plan. Manag. 2010, 53, 371–384. [Google Scholar] [CrossRef]
- Clarkson, R.; Deyes, K. Estimating the Social Cost of Carbon Emissions; The Public Enquiry Unit: London, UK, 2002. [Google Scholar]
- UBI Banca. Investire in Energie Rinnovabili. Convenienza Finanziaria e Opportunità per le Imprese; Unindustria Bologna: Bologna, Italy, 2010. (In Italian) [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nesticò, A.; Macchiaroli, M.; Pipolo, O. Costs and Benefits in the Recovery of Historic Buildings: The Application of an Economic Model. Sustainability 2015, 7, 14661-14676. https://doi.org/10.3390/su71114661
Nesticò A, Macchiaroli M, Pipolo O. Costs and Benefits in the Recovery of Historic Buildings: The Application of an Economic Model. Sustainability. 2015; 7(11):14661-14676. https://doi.org/10.3390/su71114661
Chicago/Turabian StyleNesticò, Antonio, Maria Macchiaroli, and Ornella Pipolo. 2015. "Costs and Benefits in the Recovery of Historic Buildings: The Application of an Economic Model" Sustainability 7, no. 11: 14661-14676. https://doi.org/10.3390/su71114661
APA StyleNesticò, A., Macchiaroli, M., & Pipolo, O. (2015). Costs and Benefits in the Recovery of Historic Buildings: The Application of an Economic Model. Sustainability, 7(11), 14661-14676. https://doi.org/10.3390/su71114661