Experimental Investigation of Evaporation and Drainage in Wettable and Water-Repellent Sands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Image-Based Observation of Evaporation
2.2.1.1. 2D Evaporation
2.2.1.2. 3D X-Ray Computed Tomography
2.2.2. Cyclic Drainage and Infiltration
3. Results and Discussion
3.1. Evaporation in 2D Images
3.1.1. Drying Front
3.1.2. Evaporation Rate
3.2. Evaporation Evaluated by 3D X-Ray Computed Tomography
3.3. Cyclic Drainage and Infiltration
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pierson, F.B.; Robichaud, P.R.; Moffet, C.A.; Spaeth, K.E.; Williams, C.J.; Hardegree, S.P.; Clark, P.E. Soil water repellency and infiltration in coarse-textured soils of burned and unburned sagebrush ecosystems. Catena 2008, 74, 98–108. [Google Scholar] [CrossRef]
- DeBano, L.F.; Savage, S.M.; Hamilton, D.A. The transfer of heat and hydrophobic substances during burning. Soil Sci. Am. J. 1976, 40, 779–782. [Google Scholar] [CrossRef]
- Franco, C.M.M.; Clarke, P.J.; Tate, M.E.; Oades, J.M. Hydrophobic properties and chemical characterisation of natural water repellent materials in Australian sands. J. Hydrol. 2000, 231, 47–58. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Garcia-Irles, L.; Morugan, A.; Doerr, S.H.; Garcia-Orenes, F.; Arcenegui, V.; Atanassova, I. Longevity of soil water repellency in a former wastewater disposal tree stand and potential amelioration. Geoderma 2011, 165, 78–83. [Google Scholar] [CrossRef]
- Burch, G.J.; Moore, I.D.; Burns, J. Soil hydrophobic effects on infiltration and catchment runoff. Hydrol. Process. 1989, 3, 211–222. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; Blake, W.H.; Chafer, C.J.; Humphreys, G.S.; Wallbrink, P.J. Effects of differing wildfire severities on soil wettability and implications for hydrological response. J. Hydrol. 2006, 319, 295–311. [Google Scholar] [CrossRef]
- Scott, D.F. Soil wettability in forested catchments in South Africa; as measured by different methods and as affected by vegetation cover and soil characteristics. J. Hydrol. 2000, 231, 87–104. [Google Scholar] [CrossRef]
- Etkin, D.S. Historical overview of oil spills from all sources (1960–1998). In Proceedings of the International Oil Spill Conference (IOSC 1999), Seattle, WA, USA, 8–11 March 1999; pp. 1097–1102.
- Jarvis, N.; Etana, A.; Stagnitti, F. Water repellency, near-saturated infiltration and preferential solute transport in a macroporous clay soil. Geoderma 2008, 143, 223–230. [Google Scholar] [CrossRef]
- Bauters, T.W.J.; DiCarlo, D.A.; Steenhuis, T.S.; Parlange, J.-Y. Preferential flow in water-repellent sands. Soil Sci. Soc. Am. J. 1998, 62, 1185–1190. [Google Scholar] [CrossRef]
- Bauters, T.W.J.; Steenhuis, T.S.; DiCarlo, D.A.; Nieber, J.L.; Dekker, L.W.; Ritsema, C.J.; Parlange, J.-Y.; Haverkamp, R. Physics of water repellent soils. J. Hydrol. 2000, 231–232, 233–243. [Google Scholar] [CrossRef]
- Carrillo, M.L.K.; Letey, J.; Yates, S.R. Unstable water flow in a layered soil: II. Effects of an unstable water-repellent layer. Soil Sci. Soc. Am. J. 2000, 64, 456–459. [Google Scholar] [CrossRef]
- Dekker, L.W.; Ritsema, C.J. Uneven moisture patterns in water repellent soils. Geoderma 1996, 70, 87–99. [Google Scholar] [CrossRef]
- Goebel, M.-O.; Bachmann, J.; Woche, S.K.; Fischer, W.R. Soil wettability, aggregate stability, and the decomposition of soil organic matter. Geoderma 2005, 128, 80–93. [Google Scholar] [CrossRef]
- Bodi, M.B.; Doerr, S.H.; Cerda, A.; Mataix-Solera, J. Hydrological effects of a layers of vegegation ash on underlying wettable and water repellent soil. Geoderma 2012, 191, 14–23. [Google Scholar] [CrossRef]
- Blackwell, P.S. Management of water repellency in Australia, and risks associated with preferential flow, pesticide concentration and leaching. J. Hydrol. 2000, 231–232, 384–395. [Google Scholar] [CrossRef]
- Braun, B.; Bockelmann, U.; Grohmann, E.; Szewzyk, U. Bacterial soil communities affected by water-repellency. Geoderma 2010, 158, 343–351. [Google Scholar] [CrossRef]
- Baruah, T.C.; Hasegawa, S. In-situ measurement of soil evaporation from a volcanic ash soil by TDR technique using soil water diffusivity. Geoderma 2001, 102, 317–328. [Google Scholar] [CrossRef]
- Lehmann, P.; Assouline, S.; Or, D. Characteristic lengths affecting evaporative drying of porous media. Phys. Rev. E 2008, 77. [Google Scholar] [CrossRef]
- Lehmann, P.; Or, D. Hydromechanical triggering of landslides: From progressive local failures to mass release. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Yiotis, A.G.; Boudouvis, A.G.; Stubos, A.K.; Tsimpanogiannis, I.N.; Yortsos, Y.C. Effect of liquid films on the drying of porous media. AIChE J. 2004, 50, 2721–2737. [Google Scholar] [CrossRef]
- Shokri, N.; Lehmann, P.; Or, D. Liquid-phase continuity and solute concentration dynamics during evaporation from porous media: Pore-Scale processes near vaporization surface. Phys. Rev. E 2010, 81. [Google Scholar] [CrossRef]
- Frattolillo, A.; Giovinco, G.; Mascolo, M.C.; Vitale, A. Effects of hydrophobic treatment on thermophysical properties of lightweight mortars. Exp. Therm. Fluid Sci. 2005, 29, 733–741. [Google Scholar] [CrossRef]
- Nguyen, B.-L.; Bruining, J.; Slob, E.C. Effects of wettability on dielectric properties of porous media. In Proceedings of the 1999 SPE Annual Technical Conferences and Exhibition, Houston, TX, USA, 3–8 October 1999; pp. 153–160.
- Kim, D.H.; Kim, Y.J.; Lee, J.-S.; Yun, T.S. Thermal and electrical response of unsaturated hydrophilic and hydrophobic granular materials. Geotechn. Test. J. 2011, 34, 1–9. [Google Scholar]
- Byun, Y.-H.; Tran, M.K.; Yun, T.S.; Lee, J.-S. Strength and stiffness characteristics of unsaturated hydrophobic granular media. Geotechn. Test. J. 2012, 35, 1–8. [Google Scholar]
- Truong, Q.H.; Lee, J.-S.; Dong, Y.; Yun, T.S. Capillary induced small-strain stiffness for hydrophilic and hydrophobic granular materials: Experimental and numerical studies. Soils Found. 2011, 51, 713–721. [Google Scholar] [CrossRef]
- Bachmann, J.; Horton, R.; van der Ploeg, R.R.; Woche, S. Modified sessile drop method for assessing initial soil-water contact angle of sandy soil. Soil Sci. Soc. Am. J. 2000, 64, 564–567. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybernet. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Shokri, N.; Lehmann, P.; Or, D. Characteristics of evaporation from partially wettable porous media. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.H.; Yang, H.J.; Kim, K.Y.; Yun, T.S. Experimental Investigation of Evaporation and Drainage in Wettable and Water-Repellent Sands. Sustainability 2015, 7, 5648-5663. https://doi.org/10.3390/su7055648
Kim DH, Yang HJ, Kim KY, Yun TS. Experimental Investigation of Evaporation and Drainage in Wettable and Water-Repellent Sands. Sustainability. 2015; 7(5):5648-5663. https://doi.org/10.3390/su7055648
Chicago/Turabian StyleKim, Dae Hyun, Heui Jean Yang, Kwang Yeom Kim, and Tae Sup Yun. 2015. "Experimental Investigation of Evaporation and Drainage in Wettable and Water-Repellent Sands" Sustainability 7, no. 5: 5648-5663. https://doi.org/10.3390/su7055648
APA StyleKim, D. H., Yang, H. J., Kim, K. Y., & Yun, T. S. (2015). Experimental Investigation of Evaporation and Drainage in Wettable and Water-Repellent Sands. Sustainability, 7(5), 5648-5663. https://doi.org/10.3390/su7055648