The Temporal and Spatial Evolution of Water Yield in Dali County
Abstract
:1. Introduction
2. Overview of Dali County
3. Model and Data
3.1. Water Yield Model
3.2. Data Preparation
Land Use Code | 1988 | 1995 | 2000 | 2005 | 2008 |
---|---|---|---|---|---|
11 | 196 | 192 | 185 | 185 | 173 |
12 | 147 | 117 | 149 | 147 | 138 |
21 | 262 | 234 | 263 | 240 | 260 |
22 | 127 | 149 | 132 | 142 | 128 |
23 | 184 | 195 | 182 | 178 | 186 |
24 | 0 | 0 | 0 | 0 | 7 |
31 | 238 | 258 | 231 | 238 | 233 |
32 | 38 | 33 | 38 | 33 | 36 |
33 | 8 | 1 | 8 | 1 | 8 |
42 | 180 | 198 | 180 | 198 | 180 |
43 | 1 | 1 | 1 | 1 | 1 |
46 | 2 | 2 | 2 | 2 | 2 |
51 | 8 | 14 | 19 | 22 | 24 |
52 | 21 | 20 | 22 | 22 | 23 |
53 | 2 | 0 | 2 | 5 | 15 |
Land Use Description | Land Use Code | Kc | Root Depth (mm) | Land Use Vegetation |
---|---|---|---|---|
Paddy Field | 11 | 0.65 | 2100 | 1 |
Dry Land | 12 | 0.65 | 2100 | 1 |
Forest Land | 21 | 1 | 5200 | 1 |
Shrub Land | 22 | 0.398 | 5200 | 1 |
Wood Land | 23 | 1 | 5200 | 1 |
Other Wood Land | 24 | 1 | 5200 | 1 |
High Coverage Grassland | 31 | 0.65 | 2600 | 1 |
Mid Coverage Grassland | 32 | 0.65 | 2600 | 1 |
Low Coverage Grassland | 33 | 0.65 | 2600 | 1 |
Lakes | 42 | 1.2 | 100 | 0 |
Reservoir Pond | 43 | 1.2 | 100 | 0 |
Beaches | 46 | 1.2 | 100 | 0 |
Urban Land | 51 | 0.3 | 100 | 0 |
Rural Settlements | 52 | 0.3 | 100 | 0 |
Other Construction Land | 53 | 0.3 | 100 | 0 |
4. Result
4.1. Dynamic Change of Water Yield in the Whole Study Area
4.2. Classification of Sub-Watershed Units
Category | Number of Sub-Watershed | Area (km2) | Ratio (%) |
---|---|---|---|
Stable Category | 20 | 692 | 48.94 |
Mild Interference Category | 9 | 591 | 41.8 |
Moderate Interference Category | 5 | 126 | 8.91 |
Severe Interference Category | 1 | 4 | 0.28 |
Serious Interference Category | 1 | 1 | 0.07 |
Sum | 36 | 1414 | 100 |
4.3. Spatial Variation of Water Yield in Sub-Watershed Scale
4.4. Driven Factors of Relative Capacity Change on Water Yield
Subws_id | 1988 | 1995 | 2000 | 2005 | 2008 | Range | Category | Interval |
---|---|---|---|---|---|---|---|---|
6 | 15 | 14 | 12 | 9 | 12 | 6 | Mild | a decrease |
17 | 22 | 28 | 27 | 28 | 28 | 6 | Mild | an increase occurred in 1995 |
24 | 17 | 17 | 21 | 17 | 24 | 7 | Mild | an increase occurred in 2008 |
7 | 20 | 24 | 16 | 22 | 20 | 8 | Mild | a fluctuation occurred in 2000 |
5 | 25 | 21 | 20 | 18 | 16 | 9 | Mild | a decrease |
12 | 19 | 16 | 23 | 20 | 25 | 9 | Mild | an increase occurred in 2000 |
15 | 12 | 4 | 7 | 3 | 7 | 9 | Mild | a decrease occurred in 1995 |
16 | 26 | 19 | 28 | 25 | 27 | 9 | Mild | a fluctuation occurred in 1995 |
29 | 27 | 22 | 24 | 19 | 18 | 9 | Mild | a decrease |
18 | 13 | 11 | 19 | 13 | 22 | 11 | Moderate | fluctuated frequently |
23 | 23 | 18 | 22 | 12 | 21 | 11 | Moderate | fluctuated frequently |
34 | 18 | 8 | 11 | 7 | 11 | 11 | Moderate | a decrease occurred in 1995 |
26 | 24 | 13 | 26 | 16 | 26 | 13 | Moderate | fluctuated frequently |
30 | 10 | 23 | 13 | 23 | 13 | 13 | Moderate | fluctuated frequently |
33 | 11 | 27 | 15 | 27 | 14 | 16 | Severe | fluctuated frequently |
10 | 1 | 25 | 1 | 24 | 1 | 24 | Serious | fluctuated frequently |
4.5. Sensitivity of Water Yield to Precipitation
Elasticity Index | Number of Sub-Watershed | Area (km2) | Ratio (%) |
---|---|---|---|
1.68–1.98 | 3 | 60 | 4.24 |
1.98–2.66 | 17 | 612 | 43.28 |
2.66–3.24 | 10 | 310 | 21.93 |
3.24–4.00 | 5 | 431 | 30.48 |
Infinity | 1 | 1 | 0.07 |
Sum | 36 | 1414 | 100 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Hoyer, R.; Chang, H. Assessment of freshwater ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization. Appl. Geogr. 2014, 53, 402–416. [Google Scholar] [CrossRef]
- Ullrich, A.; Volk, M. Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity. Agric. Water Manag. 2009, 96, 1207–1217. [Google Scholar] [CrossRef]
- Baker, T.J.; Scott, N.M. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Kang, K.; Merwade, V. Development and application of a storage-release based distributed hydrologic model using GIS. J. Hydrol. 2011, 403, 1–13. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Auken, E.; Bamberg, C.A.; Christensen, B.S.; Clausen, T.; Dalgaard, E.; Effersø, F.; Ernstsen, V.; Gertz, F.; Hansen, A.L.; et al. Nitrate reduction in geologically heterogeneous catchments—A framework for assessing the scale of predictive capability of hydrological models. Sci. Total Environ. 2014, 468–469, 1278–1288. [Google Scholar] [CrossRef] [PubMed]
- De Lange, W.J.; Prinsen, G.F.; Hoogewoud, J.C.; Veldhuizen, A.A.; Verkaik, J.; Oude Essink, G.H.P.; van Walsum, P.E.V.; Delsman, J.R.; Hunink, J.C.; Massop, H.T.L.; et al. An operational, multi-scale, multi-model system for consensus-based, integrated water management and policy analysis: The Netherlands Hydrological Instrument. Environ. Model. Softw. 2014, 59, 98–108. [Google Scholar] [CrossRef]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system. J. Hydrol. 1986, 87, 45–59. [Google Scholar] [CrossRef]
- Singh, A.; Imtiyaz, M.; Isaac, R.K.; Denis, D.M. Comparison of soil and water assessment tool (SWAT) and multilayer perceptron (MLP) artificial neural network for predicting sediment yield in the Nagwa agricultural watershed in Jharkhand, India. Agric. Water Manag. 2012, 104, 113–120. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.; Zhang, B.; Liu, M. Water yield of Xitiaoxi river basin based on inVEST modeling. J. Resour. Ecol. 2012, 3, 50–54. [Google Scholar] [CrossRef]
- Sánchez-Canales, M.; López Benito, A.; Passuello, A.; Terrado, M.; Ziv, G.; Acuña, V.; Schuhmacher, M.; Elorza, F.J. Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed. Sci. Total Environ. 2012, 440, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Fu, B. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes. Glob. Planet. Change 2013, 101, 119–128. [Google Scholar] [CrossRef]
- Chiang, L.-C.; Lin, Y.-P.; Huang, T.; Schmeller, D.S.; Verburg, P.H.; Liu, Y.-L.; Ding, T.-S. Simulation of ecosystem service responses to multiple disturbances from an earthquake and several typhoons. Landsc. Urban Plan. 2014, 122, 41–55. [Google Scholar] [CrossRef]
- Yunnan Environmental Protection Department, Regionalization of Ecological Environmental Function of Yunnan Province, Editor 2009. (In Chinese)
- Water yield: Reservoir hydropower production. Available online: http://ncp-dev.stanford.edu/~dataportal/invest-releases/documentation/current_release/reservoirhydropowerproduction.html (accessed on 22 April 2015).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements-FAO Irrigation And Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Dong, S.; Cui, H. Analysis of calculationg formula and improvement of empirical formula for saturation vapour pressure. J. Appl. Meteorol. Sci. 1992, 3, 501–508. (In Chinese) [Google Scholar]
- Deng, X.; Jiang, Q.; Zhan, J.; He, S.; Lin, Y. Simulation on the dynamics of forest area changes in Northeast China. J. Geogr. Sci. 2010, 20, 495–509. [Google Scholar] [CrossRef]
- Boer, E.P.J.; de Beurs, K.; Hardkamp, A.D. A Dewi Hartkamp, Kriging and thin plate splines for mapping climate variables. Int. J. Appl. Earth Observ. Geoinf. 2001, 3, 146–154. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Z.; Cui, Y. Evaluating the solar radiation resources of China in recent 20 years by meteorological model. J. Appl. Meteorol. Sci. 2010, 21, 343–351. [Google Scholar]
- FAO/IIASA/ISRIC/ISSCAS/JRC. Harmonized World Soil Database v 1.2; FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2012. [Google Scholar]
- Liu, J.; Zhang, Z.; Zhuang, D.; Wang, Y.; Zhou, W.; Zhang, S.; Li, R.; Jiang, N.; Wu, S. A study on the spatial-temporal dynamic changes of land-useand driving forces analyses of China in the 1990s. Geogr. Res. 2003, 22, 1–12. [Google Scholar]
- Wang, Y.; Yu, P.; Xiong, W.; Shen, Z.; Guo, M.; Shi, Z.; Du, A.; Wang, L. Water-yield reduction after afforestation and related processes in the semiarid liupan mountains, Northwest China. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 1086–1097. [Google Scholar] [CrossRef]
- Salmoral, G.; Willaarts, B.A.; Troch, P.A.; Garridio, A. Drivers influencing streamflow changes in the Upper Turia basin, Spain. Sci. Total Environ. 2015, 503–504, 258–268. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Yuan, Y.; Nie, Y.; Ma, E.; Li, H.; Geng, X. The Temporal and Spatial Evolution of Water Yield in Dali County. Sustainability 2015, 7, 6069-6085. https://doi.org/10.3390/su7056069
Yu J, Yuan Y, Nie Y, Ma E, Li H, Geng X. The Temporal and Spatial Evolution of Water Yield in Dali County. Sustainability. 2015; 7(5):6069-6085. https://doi.org/10.3390/su7056069
Chicago/Turabian StyleYu, Jing, Yongwei Yuan, Yan Nie, Enjun Ma, Hongji Li, and Xiaoli Geng. 2015. "The Temporal and Spatial Evolution of Water Yield in Dali County" Sustainability 7, no. 5: 6069-6085. https://doi.org/10.3390/su7056069
APA StyleYu, J., Yuan, Y., Nie, Y., Ma, E., Li, H., & Geng, X. (2015). The Temporal and Spatial Evolution of Water Yield in Dali County. Sustainability, 7(5), 6069-6085. https://doi.org/10.3390/su7056069