The Effect of Land Use on Availability of Japanese Freshwater Resources and Its Significance for Water Footprinting
Abstract
:1. Introduction
2. Methods of Analysis
2.1. Water Balance Model for Assessing Availability of Freshwater Resources
2.2. Classification of Land-Use Type
Land Use Type | Infiltration Capacity (mm/h) | Maximum Evapotranspiration Ratio (Dimensionless) |
---|---|---|
Natural forest | 266 | 1.2 |
Uncultivated land | 102 | 1 |
Planted forest | 266 | 1.2 |
Paddy field | 89.3 * (except June through August) | 1 |
0.167 (June through August) | ||
Arable land | 89.3 | 1 |
Urban area | 15.3 ** | 0.9 |
2.3. Availability Assessment of Groundwater Recharge and Surface Flow
2.4. Intensity Factors of Availability Loss of Freshwater Caused by Land Use
2.5. Calculation of Water Footprint of Goods Produced in Japan
3. Results and Discussion
3.1. Intensity Factors of Availability Loss of Freshwater Attributed to Land Use
Land Use Type | Intensity Factors of Availability Loss (m3/m2) | |
---|---|---|
Surface Flow | Groundwater Recharge | |
Planted forest | 0 | 3.87 × 10−4 |
Paddy field | −0.295 | 0.614 |
Arable land | 0 | −6.08 × 10−3 |
Urban area | −0.582 | 1.21 |
3.2. Water Footprint Inventory of Goods Produced in Japan
3.3. Water Footprint Impact of Goods Produced in Japan
3.4. Sensitivity Analysis
Land Use Type | Intensity Factors of Availability Loss (m3/m2) | |||
---|---|---|---|---|
Surface Flow | Groundwater Recharge | |||
Average | Coefficient of Variation | Average | Coefficient of Variation | |
Planted forest | 0 | − | 3.87 × 10−4 | 1.21 |
Paddy field | −0.295 | 0.347 | 0.614 | 0.348 |
Arable land | 0 | − | −6.08 × 10−3 | 1.02 |
Urban area | −0.582 | 0.282 | 1.21 | 0.284 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shiklomanov, I.A.; Rodda, J.C. World Water Resources at the Beginning of the Twenty-First Century; Cambridge University Press: Cambridge, UK, 2003. Available online: http://catdir.loc.gov/catdir/samples/cam034/2002031201.pdf (accessed on 15 October 2015).
- The International Organization for Standardization. Environmental Management—Water Footprint—Principles, Requirements and Guidelines; ISO14046; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Kounina, A.; Margni, M.; Bayart, J.B.; Boulay, A.M.; Berger, M.; Bulle, C.; Frischknecht, R.; Koehler, A.; Milà i Canals, L.; Motoshita, M.; et al. Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int. J. Life Cycle Assess. 2013, 18, 707–721. [Google Scholar] [CrossRef]
- Boulay, A.M.; Bare, J.; Camillis, C.D.; Döll, P.; Gassert, F.; Gerten, D.; Humbert, S.; Inaba, A.; Itsubo, N.; Lemoine, Y.; et al. Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: Outcome of the expert workshops. Int. J. Life Cycle Assess. 2015, 20, 577–583. [Google Scholar] [CrossRef]
- European Commission—Joint Research Centre—Institute for Environment and Sustainability. International Reference Life Cycle Data System (ILCD) Handbook—Framework and Requirements for Life Cycle Impact Assessment Models and Indicators, 1st ed.; Publication Office of the European Union: Luxembourg, 2010; p. 103. [Google Scholar]
- Verones, P.; Saner, D.; Pfister, S.; Baisero, D.; Rondinini, C.; Hellweg, S. Effects of consumptive water use on wetlands of international importance. Environ. Sci. Technol. 2013, 747, 12248–12257. [Google Scholar] [CrossRef] [PubMed]
- Pfister, S.; Suh, S. Environmental impacts of thermal emissions to freshwater: Spatially explicit fate and effect modeling for life cycle assessment and water footprinting. Int. J. Life Cycle Assess. 2015, 20, 927–936. [Google Scholar] [CrossRef]
- Quinteiro, P.; Dias, A.C.; Araújo, A.; Pestana, J.L.T.; Ridoutt, B.G.; Arroja, L. Suspended solids in freshwater systems: Characterization model describing potential impacts on aquatic biota. Int. J. Life Cycle Assess. 2015, 20, 1232–1242. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011; p. 197. [Google Scholar]
- Fehrenbach, H.; Grahl, B.; Giegrich, J.; Busch, M. Hemeroby as an impact category indicator for the integration of land use into life cycle (impact) assessment. Int. J. Life Cycle Assess. 2015. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Juliano, P.; Sanguansri, P.; Sellahewa, J. The water footprint of food waste: Case study of fresh mango in Australia. J. Clean. Prod. 2010, 18, 1714–1721. [Google Scholar] [CrossRef]
- Núñez, M.; Pfister, S.; Roux, P.; Antón, A. Estimating water consumption of potential natural vegetation on global dry lands: Building an LCA framework for green water flows. Environ. Sci. Technol. 2013, 47, 12258–12265. [Google Scholar] [CrossRef] [PubMed]
- Quinteiro, P.; Dias, A.C.; Silva, M.; Ridoutt, B.G.; Arroja, L. A contribution to the environmental impact assessment of green water flows. J. Clean. Prod. 2015, 93, 318–329. [Google Scholar] [CrossRef]
- Milà i Canals, L.; Chenoweth, J.; Chapagain, A.; Orr, S.; Antón, A.; Clift, R. Assessing freshwater use impacts in LCA: Part I—Inventory modelling and characterisation factors for the main impact pathways. Int. J. Life Cycle Assess. 2009, 14, 28–42. [Google Scholar] [CrossRef]
- National Land Information Division, National Spatial Planning and Regional Policy Bureau, Ministry of Land, Infrastructure, Transport and Tourism, National Land Numerical Information Download Service. Available online: http://nlftp.mlit.go.jp/ksj-e/index.html (accessed on 4 January 2012).
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Forestry Agency, Current Status of Forestry Resources, The Ministry of Agriculture, Forestry and Fisheries (MAFF) Web. Available online: http://www.rinya.maff.go.jp/j/keikaku/genkyou/h24/3.html (accessed on 10 October 2015).
- Tsukamoto, Y. Forestry Hydrology; Buneido: Tokyo, Japan, 1992; ISBN 978-4-8300-4058-0. (In Japanese) [Google Scholar]
- Pidwirny, M. The Hydrologic Cycle. Fundamentals of Physical Geography, 2nd ed. Available online: http://www.physicalgeography.net/fundamentals/8b.html (accessed on 10 October 2015).
- Tosaki, Y.; Tase, N.; Sasa, K.; Takahashi, T.; Nagashima, Y. Estimation of groundwater residence time using the 36Cl bomb pulse. Groundwater 2011, 49, 891–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashiwaya, K.; Hasegawa, T.; Nakata, K.; Tomioka, Y.; Mizuno, T. Multiple tracer study in Horonobe, northern Hokkaido, Japan: 1. Residence time estimation based on multiple environmental tracers and lumped parameter models. J. Hydrol. 2014, 519, 532–548. [Google Scholar] [CrossRef]
- Sakaguchi, A.; Ohtsuka, Y.; Yokota, K.; Sasaki, K.; Komura, K.; Yamamoto, M. Cosmogenic radionuclide 22Na in the Lake Biwa system (Japan): Residence time, transport and application to the hydrology. Earth Planet. Sci. Lett. 2005, 231, 307–316. [Google Scholar] [CrossRef]
- Current State of Water Resources in Japan. The Ministry of Land, Infrastructure, Transport and Tourism (MLIT) Web. Available online: http://www.mlit.go.jp/tochimizushigen/mizsei/water_resources/contents/current_state.html (accessed on 10 October 2015).
- Rates of Sources for Agricultural Withdrawal of Water. The Ministry of Agriculture, Forestry and Fisheries (MAFF) Web. Available online: http://www.maff.go.jp/j/council/seisaku/nousin/bukai/h24_4/pdf/data1-2_4.pdf (accessed on12 October 2015). (In Japanese)
- Japan Water Works Association. Water Supply in Japan 2014. Available online: http://www.jwwa.or.jp/jigyou/kaigai_file/2014WaterSupplyInJapan.pdf (accessed on 12 October 2015).
- Ono, Y.; Motoshita, M.; Itsubo, N. Development of water footprint inventory database on Japanese goods and services distinguishing the types of water resources and the forms of water uses based on input-output analysis. Int. J. Life Cycle Assess. 2015, 20, 1456–1467. [Google Scholar] [CrossRef]
- Ono, Y.; Motoshita, M.; Itsubo, N. Development of water footprint inventory database considering pollution. J. Life Cycle Assess. Jpn. 2015, 11, 22–31. (In Japanese) [Google Scholar] [CrossRef]
- Horiguchi, K.; Itsubo, N. Development of land use inventory using input-output analysis for life cycle assessment. Pap. Environ. Inf. Sci. 2011, 25, 19–24. (In Japanese) [Google Scholar]
- FAO, AQUASTAT. Food and Agriculture Organization of United Nations Web. Available online: http://www.fao.org/nr/water/aquastat/main/index.stm (accessed on 7 September 2010).
- Pfister, S.; Bayer, P. Monthly water stress: Spatially and temporally explicit consumptive water footprint of global crop production. J. Clean. Prod. 2014, 73, 53–62. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motoshita, M.; Ono, Y.; Finkbeiner, M.; Inaba, A. The Effect of Land Use on Availability of Japanese Freshwater Resources and Its Significance for Water Footprinting. Sustainability 2016, 8, 86. https://doi.org/10.3390/su8010086
Motoshita M, Ono Y, Finkbeiner M, Inaba A. The Effect of Land Use on Availability of Japanese Freshwater Resources and Its Significance for Water Footprinting. Sustainability. 2016; 8(1):86. https://doi.org/10.3390/su8010086
Chicago/Turabian StyleMotoshita, Masaharu, Yuya Ono, Matthias Finkbeiner, and Atsushi Inaba. 2016. "The Effect of Land Use on Availability of Japanese Freshwater Resources and Its Significance for Water Footprinting" Sustainability 8, no. 1: 86. https://doi.org/10.3390/su8010086
APA StyleMotoshita, M., Ono, Y., Finkbeiner, M., & Inaba, A. (2016). The Effect of Land Use on Availability of Japanese Freshwater Resources and Its Significance for Water Footprinting. Sustainability, 8(1), 86. https://doi.org/10.3390/su8010086