Landscape Analysis to Assess the Impact of Development Projects on Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Fragmentation Analysis
2.3. Statistics
2.4. Analysis Procedure
3. Results
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Korea Forest Service. Available online: http://www.forest.go.kr (accessed on 12 August 2015).
- Nilon, C.H.; Long, C.N.; Zipperer, W.C. Effects of wildland development on forest bird communities. Landsc. Urban Plan. 1995, 32, 81–92. [Google Scholar] [CrossRef]
- Young, A.; Boyle, T.; Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 1996, 11, 413–418. [Google Scholar] [CrossRef]
- Theobald, D.M.; Miller, J.R.; Hobbs, N.T. Estimation the cumulative effects of development on wildlife habitat. Landsc. Urban Plan. 1997, 39, 25–36. [Google Scholar] [CrossRef]
- Mckinney, M.L. Urbanization, biodiversity, and conservation. Bioscience 2002, 52, 883–890. [Google Scholar] [CrossRef]
- Marzluff, J.M.; Ewing, K. Restoration of fragmented landscapes for the conservation of birds: A general framework and specific recommendations for urbanizing landscapes. Restor. Ecol. 2001, 9, 280–292. [Google Scholar] [CrossRef]
- Hansen, A.J.; Knight, R.L.; Marzluff, J.M. Effects of exurban development on biodiversity. Ecol. Appl. 2005, 15, 1893–1905. [Google Scholar] [CrossRef]
- Munroe, D.K.; Croissant, C.; York, A.M. Land use policy and landscape fragmentation in an urbanizing region: Assessing the impact of zoning. Appl. Geogr. 2005, 25, 121–141. [Google Scholar] [CrossRef]
- Borgmann, K.B.; Rodewald, A.D. Forest restoration in urbanizing landscapes: Interactions between land uses and exotic shrubs. Restor. Ecol. 2005, 13, 334–340. [Google Scholar] [CrossRef]
- Gonzalez-Abraham, C.E.; Radeloff, V.C.; Hammer, R.B. Building patterns and landscape fragmentation in northern Wisconsin, USA. Landsc. Ecol. 2007, 22, 217–230. [Google Scholar] [CrossRef]
- Cho, K.J.; Ro, T.H. Environmental Impact Assessment system. Korea Environ. Policy Bull. 2012, 10, 1–19. [Google Scholar]
- Lee, J.Y.; Lee, J.H. Actual factors influencing EIA system’s validity. J. Environ. Policy Adm. 1999, 7, 19–46. [Google Scholar]
- Choi, H.S. A study on the improvements for the legal systems related to the conservation of mountain ridge areas—In case of Whasung. J. Korean Soc. Environ. Restor. Technol. 2009, 12, 133–144. [Google Scholar]
- Jung, B.G. A note on the problems and alternative improvement of environmental impact Assessment in Korea—Evaluation in an engineer’s viewpoint. Public Law J. 2009, 10, 327–349. [Google Scholar]
- No, H.W.; Choi, H.S. The improvements for the altitude criteria related to the adaptive reuse permission on mountains district—With special emphasis on ‘Management of Mountains District Act’ and ‘National Land Planning and Utilization Act’. J. Korean Soc. Rural Plan. 2011, 17, 81–90. [Google Scholar] [CrossRef]
- Gehlhausen, S.M.; Schwartz, M.W.; Augspurger, C.K. Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecol. 2000, 147, 21–35. [Google Scholar] [CrossRef]
- Kupfer, J.A.; Runkle, J.R. Edge-mediated effects on stand dynamic processes in forest interiors: A coupled field and simulation approach. Oikos 2003, 101, 135–146. [Google Scholar] [CrossRef]
- Harper, K.A.; Macdonald, E.; Burton, P.J. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 2005, 19, 768–782. [Google Scholar] [CrossRef]
- McDonald, R.I.; Urban, D.L. Edge effects on species composition and exotic species abundance in the North Carolina Piedmont. Biol. Invasions 2006, 8, 1049–1060. [Google Scholar] [CrossRef]
- Ewers, R.M.; Didham, R.K. The effect of fragment shape and species’ sensitivity to habitat edges on animal population size. Conserv. Biol. 2007, 21, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Chas-Amil, M.L.; Touza, J.; García-Martínez, E. Forest fires in the wildland-urban interface: A spatial analysis of forest fragmentation and human impacts. Appl. Geogr. 2013, 43, 127–137. [Google Scholar] [CrossRef]
- Herzog, F.; Lausch, A.; Müller, E.; Thulke, H.; Steinhardt, U.; Lehmann, S. Landscape metrics for assessment of landscape destruction and rehabilitation. Environ. Manag. 2001, 27, 91–107. [Google Scholar] [CrossRef] [PubMed]
- Mörtberg, U.M.; Balfors, B.; Knol, W.C. Landscape ecological assessment: A tool for integrating biodiversity issues in strategic environmental assessment and planning. J. Environ. Manag. 2007, 82, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Sitzia, T.; Campagnaro, T.; Grigolato, S. Ecological risk and accessibility analysis to assess the impact of roads under Habitats Directive. J. Environ. Plan. Manag. 2016. [Google Scholar] [CrossRef]
- Trentanovi, G.; Lippe, M.; Sitzia, T.; Ziechmann, U.; Kowarik, I.; Cierjacks, A. Biotic homogenization at the community scale: Disentangling the roles of urbanization and plant invasion. Divers. Distrib. 2013, 19, 738–748. [Google Scholar] [CrossRef]
- Environmental Impact Assessment Support System. Available online: https://eiass.go.kr (accessed on 12 October 2015).
- Swenson, J.J.; Franklin, J. The effects of future urban development on habitat fragmentation in the Santa Monica Mountains. Landsc. Ecol. 2000, 15, 713–730. [Google Scholar] [CrossRef]
- Stenhouse, R.N. Fragmentation and internal disturbance of native vegetation reserves in the Perth metropolitan area, Western Australia. Landsc. Urban Plan. 2004, 68, 389–401. [Google Scholar] [CrossRef]
- Zeng, H.; Wu, X.B. Utilities of edge-based metrics for studying landscape fragmentation. Comput. Environ. Urban 2005, 29, 159–178. [Google Scholar] [CrossRef]
- Yu, X.; Ng, C. An integrated evaluation of landscape change using remote sensing and landscape metrics: A case study of Panyu, Guangzhou. Int. J. Remote Sens. 2006, 27, 1075–1092. [Google Scholar] [CrossRef]
- Baskent, E.Z.; Kadioğullari, A.I. Spatial and temporal dynamics of land use pattern in Turkey: A case study in İnegöl. Landsc. Urban Plan. 2007, 81, 316–327. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS Ver. 4: Spatial Pattern Analysis Program for Quantifying Landscape Structure; General Technical Report; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995.
- Bohn, F.J.; Frank, K.; Huth, A. Of climate and its resulting tree growth: Simulating the productivity of temperate forests. Ecol. Model. 2014, 278, 9–17. [Google Scholar] [CrossRef]
- Bregman, T.P.; Sekercioglu, C.H.; Tobias, J.A. Global patterns and predictors of bird species responses to forest fragmentation: Implications for ecosystem function and conservation. Biol. Conserv. 2014, 169, 372–383. [Google Scholar] [CrossRef]
- Faaborg, J.; Brittingham, M.; Donovan, T.; Blake, J. Habitat Fragmentation in the Temperate Zone: A Perspective for Managers. In Ecology and Management of Neotropical Migratory Birds: A Synthesis and Reviews of Critical Issues; Martin, T.E., Finch, D.M., Eds.; Oxford University Press: New York, NY, USA, 1995; pp. 331–338. [Google Scholar]
- Spiecker, H. Silvicultural management in maintaining biodiversity and resistance of forest in Europe-temperate zone. J. Environ. Manag. 2003, 67, 55–65. [Google Scholar] [CrossRef]
- Ziter, C.; Bennett, E.M.; Gonzalez, A. Temperate forest fragments maintain aboveground carbon stocks out to the forest edge despite changes in community composition. Oecologia 2014, 176, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Colding, J.; Folke, C. The role of golf courses in biodiversity conservation and ecosystem management. Ecosystems 2009, 12, 191–206. [Google Scholar] [CrossRef]
- Porter, E.E.; Forschner, B.R.; Blair, R.B. Woody vegetation and canopy fragmentation along a forest-to-urban gradient. Urban Ecosyst. 2001, 5, 131–151. [Google Scholar] [CrossRef]
- Saarikivi, J.; Knopp, T.; Granroth, A. The role of golf courses in maintaining genetic connectivity between common frog (Rana temporaria) populations in an urban setting. Conserv. Genet. 2013, 14, 1057–1064. [Google Scholar] [CrossRef]
- Dungan, J.L.; Perry, J.N.; Dale, M.R.T.; Legendre, P.; Citron-Pousty, S.; Fortin, M.-J.; Jakomulska, A.; Miriti, M.; Rosenberg, M.S. A balanced view of scale in spatial statistical analysis. Ecography 2002, 25, 626–640. [Google Scholar] [CrossRef]
- Gustafson, E.J. Quantifying landscape spatial pattern: What is the state of the art? Ecosystems 1998, 1, 143–156. [Google Scholar] [CrossRef]
Landscape Metrics | |
---|---|
Metrics Selected |
|
Metrics Excluded |
|
Definitions (unit) | Formulations |
AREA - Patch Size in Area (ha) | |
CA - Class Area (ha) | |
CLUMPY - Clumpiness Index (−) | |
CONNECT - Connectance Index (−) | |
CONTIG - Contiguity Index (−) | |
CPLAND - Core Area Percentage of Landscape (%) | |
ED - Edge Density (m/ha) | |
ENN - Euclidean Nearest Neighbor (m) | |
LPI - Largest Patch Index (%) | |
LSI - Landscape Shape Index (−) | |
NDCA - Number of Disjunct Core Areas (−) | |
NP - Number of Patches (−) | |
PD - Patch Density (per 100 ha) | |
PLAND - Percentage of Landscape (%) | |
SIMI - Similarity Index (−) | |
TCA - Total Core Area (ha) | |
TE - Total Edge Length (m) |
Golf Course | Type III Sum of Squares | Degree of freedom | Mean Square | F | p-Value | |
Landscape Metric | Source of Variation | |||||
CA | Time | 69,435.275 | 1 | 69,435.275 | 2.016 | 0.158 |
Time & buffer | 80,134.441 | 7 | 11,447.777 | 0.332 | 0.938 | |
NP | Time | 10,653.762 | 1 | 10,653.762 | 75.248 | 0.000 |
Time & buffer | 4743.143 | 7 | 677.592 | 4.786 | 0.000 | |
PD | Time | 44.566 | 1 | 44.566 | 8.316 | 0.004 |
Time & buffer | 28.030 | 7 | 4.004 | 0.747 | 0.632 | |
TE | Time | 2.926 × 1010 | 1 | 2.926 × 1010 | 157.822 | 0.000 |
Time & buffer | 1.549 × 1010 | 7 | 2,213,266,064 | 11.938 | 0.000 | |
LSI | Time | 469.167 | 1 | 469.167 | 108.217 | 0.000 |
Time & buffer | 27.134 | 7 | 3.876 | 0.894 | 0.513 | |
CONNECT | Time | 9033.243 | 1 | 9033.243 | 41.729 | 0.000 |
Time & buffer | 4071.675 | 7 | 581.668 | 2.687 | 0.012 | |
Industrial Complex | Type III Sum of Squares | Degree of freedom | Mean Square | F | p-Value | |
Landscape Metric | Source of Variation | |||||
CA | Time | 1,058,086.749 | 1 | 1,058,086.749 | 17.829 | 0.000 |
Time & buffer | 466,276.167 | 7 | 66,610.881 | 1.122 | 0.354 | |
NP | Time | 6460.141 | 1 | 6460.141 | 20.904 | 0.000 |
Time & buffer | 4654.797 | 7 | 664.971 | 2.152 | 0.043 | |
PD | Time | 528.821 | 1 | 528.821 | 59.177 | 0.000 |
Time & buffer | 71.115 | 7 | 10.159 | 1.137 | 0.345 | |
TE | Time | 96.776 | 1 | 96.776 | 13.386 | 0.000 |
Time & buffer | 52.607 | 7 | 7.515 | 1.040 | 0.407 | |
SIMI | Time | 353,334,316.7 | 1 | 353,334,316.7 | 13.284 | 0.000 |
Time & buffer | 238,791,915.9 | 7 | 34,113,130.84 | 1.282 | 0.265 | |
CONNECT | Time | 1832.154 | 1 | 1832.154 | 5.206 | 0.024 |
Time & buffer | 743.772 | 7 | 106.253 | 0.302 | 0.952 |
Repeated Measures ANOVA for Golf Courses (Mean Value) 1 | |||||||
---|---|---|---|---|---|---|---|
Metrics/Buffer Zones | Forest Area (ha) | Metrics/Buffer Zones | Forest Area (ha) | ||||
30~60 | 60~90 | 90 + | 30~60 | 60~90 | 90 + | ||
CA 100 m vs. | TE 100 m vs. | ||||||
200 m | −25.77 | −33.12 | −63.21 | 200 m | −4208.0 | −4321.92 | −6151.67 |
300 m | −53.23 | −66.50 | −124.40 | 300 m | −9063.0 | −8890.77 | −10,587.50 |
400 m | −81.29 | −101.04 | −184.90 | 400 m | −13,910.5 | −13,704.04 | −14,508.33 |
500 m | −109.43 * | −136.88 | −248.56 | 500 m | −19,201.5 | −18,644.35 * | −20,004.17 |
1000 m | −266.43 * | −367.78 * | −622.87 | 1000 m | −50,323.0 * | −48,914.42 * | −55,064.17 |
1500 m | −480.29 * | −697.44 * | −1085.17 * | 1500 m | −88,897.5 * | −86,739.23 * | −96,248.33 * |
2000 m | −757.57 * | −1105.56 * | −1638.31 * | 2000 m | −143,196.5 * | −131,822.69 * | −138,245.83 * |
SE2 | 33.75 | 61.71 | 236.24 | SE | 8970.79 | 5099.21 | 20,851.76 |
NP 100 m vs. | LSI 100 m vs. | ||||||
200 m | −0.8 | −0.23 | −1.67 | 200 m | −0.42 | −0.30 | 0.03 |
300 m | −2.9 | −1.96 | −0.33 | 300 m | −0.94 | −0.70 | 0.15 |
400 m | −5.4 | −4.23 | −2.50 | 400 m | −1.40 | −1.16 | 0.21 |
500 m | −6.6 | −5.04 | −8.67 | 500 m | −1.85 | −1.54 | −0.10 |
1000 m | −19.9 | −14.39 * | −17.17 | 1000 m | −4.59 * | −3.76 * | −1.67 |
1500 m | −34.6 * | −23.62 * | −23.00 | 1500 m | −7.00 * | −5.59 * | −3.18 |
2000 m | −56.2 * | −37.58 * | −38.17 | 2000 m | −9.86 * | −7.42 * | −5.45 |
SE | 6.20 | 3.93 | 13.56 | SE | 1.25 | 0.77 | 2.28 |
PD 100 m vs. | CONNECT 100 m vs. | ||||||
200 m | 2.51 | 2.72 * | 0.64 | 200 m | 6.48 | −2.01 | 3.10 |
300 m | 2.83 | 3.12 * | 1.60 | 300 m | −1.10 | 7.29 | 7.62 |
400 m | 2.77 | 3.22 * | 1.58 | 400 m | 6.49 | 12.58 | 12.30 |
500 m | 3.56 | 3.66 * | 1.02 | 500 m | 11.35 | 12.95 | 15.34 |
1000 m | 4.21 * | 4.16 * | 1.64 | 1000 m | 22.35 * | 27.16 * | 18.40 |
1500 m | 4.66 * | 4.54 * | 2.19 | 1500 m | 25.44 * | 27.31 * | 16.14 |
2000 m | 4.71 * | 4.63 * | 1.41 | 2000 m | 26.85 * | 32.10 * | 20.11 |
SE | 1.28 | 0.84 | 0.80 | SE | 5.99 | 6.13 | 8.42 |
Repeated Measures ANOVA for Industrial Complexes (Mean Value) 1 | |||||
---|---|---|---|---|---|
Indexes/Buffer Zones | Forest Area (ha) | Indexes/Buffer Zones | Forest Area (ha) | ||
0~30 | 30 + | 0~30 | 30 + | ||
CA 100 m vs. | LSI 100 m vs. | ||||
200 m | −18.50 | −15.20 | 200 m | −0.35 | −0.32 |
300 m | −37.86 | −29.26 | 300 m | −0.81 | −0.63 |
400 m | −59.03 | −44.70 | 400 m | −1.24 | −1.12 |
500 m | −82.06 | −62.26 | 500 m | −1.76 * | −1.54 |
1000 m | −218.12 | −192.13 * | 1000 m | −4.25 * | −3.22 * |
1500 m | −400.04 * | −368.13 * | 1500 m | −6.55 * | −5.43 * |
2000 m | −629.77 * | −588.48 * | 2000 m | −8.59 * | −7.27 * |
SE2 | 74.86 | 44.31 | SE | 0.54 | 0.51 |
NP 100 m vs. | SIMI 100 m vs. | ||||
200 m | −0.92 | 0.00 | 200 m | −279.51 | −43.82 |
300 m | −2.92 | −3.33 | 300 m | −596.85 | −299.51 |
400 m | −5.04 | −5.83 | E | −574.15 | −371.26 |
500 m | −6.19 | −6.67 | 500 m | E | −56.10 |
E | −18.04 * | −16.83 | 1000 m | −1505.12 | −254.72 |
1500 m | −32.08 * | −30.00 | 1500 m | −319.40 | −622.45 |
2000 m | −48.89 * | −46.33 * | 2000 m | −5651.88 * | −715.27 |
SE | 3.49 | 11.11 | SE | 1515.28 | 338.71 |
PD 100 m vs. | CONNECT 100 m vs. | ||||
200 m | 4.73 * | 3.72 | 200 m | 8.66 | −2.98 |
300 m | 5.61 * | 3.98 | 300 m | 15.07 * | 9.21 |
400 m | 5.96 * | 4.20 | 400 m | 18.81 * | 10.75 |
500 m | 6.78 * | 5.00 | 500 m | 19.82 * | 12.07 |
1000 m | 7.44 * | 5.68 * | 1000 m | 31.03 * | 15.65 |
1500 m | 7.78 * | 5.74 * | 1500 m | 33.03 * | 17.75 |
2000 m | 8.00 * | 5.82 * | 2000 m | 35.11 * | 19.00 |
SE | 1.09 | 1.53 | SE | 4.30 | 10.11 |
Golf Courses | Forest Area (ha) | Landscape Metrics (m) | |||||||
CA | NP | PD | TE | LSI | CONNECT | Mean | Mean * (Representative) | ||
30~60 | 500 | 1000 | 500 | 500 | 500 | 500 | 580 | 670 | |
60~90 | 500 | 500 | 100 | 400 | 500 | 500 | 420 | 330 | |
Over 90 | 1000 | 2000 | 2000 | 1000 | 2000 | 2000 | 1670 | 1670 | |
Industrial Complexes | Forest Area (ha) | Landscape Metrics (m) | |||||||
CA | NP | PD | LSI | SIMI | CONNECT | Mean | Mean * (Representative) | ||
0~30 | 1000 | 500 | 100 | 400 | 1500 | 200 | 620 | 270 | |
Over 30 | 500 | 1500 | 500 | 500 | 2000 | 2000 | 1170 | 1330 | |
Definitions | Major Landscape Metric Elements | ||||||||
CA: NP: PD: TE: LSI: SIMI: CONNECT | class area no. of patches patch density total edge length landscape shape index similarity index connectance index |
|
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Lee, S.; Ji, S.Y.; Jeong, J.-C.; Lee, P.S.-H. Landscape Analysis to Assess the Impact of Development Projects on Forests. Sustainability 2016, 8, 1012. https://doi.org/10.3390/su8101012
Choi J, Lee S, Ji SY, Jeong J-C, Lee PS-H. Landscape Analysis to Assess the Impact of Development Projects on Forests. Sustainability. 2016; 8(10):1012. https://doi.org/10.3390/su8101012
Chicago/Turabian StyleChoi, Jaeyong, Sanghyuk Lee, Seung Yong Ji, Jong-Chul Jeong, and Peter Sang-Hoon Lee. 2016. "Landscape Analysis to Assess the Impact of Development Projects on Forests" Sustainability 8, no. 10: 1012. https://doi.org/10.3390/su8101012
APA StyleChoi, J., Lee, S., Ji, S. Y., Jeong, J. -C., & Lee, P. S. -H. (2016). Landscape Analysis to Assess the Impact of Development Projects on Forests. Sustainability, 8(10), 1012. https://doi.org/10.3390/su8101012