Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data Sources
2.2. Logarithmic Mean Divisia Index (LMDI)
2.3. Decoupling Elasticity Model
3. Cointegration Test
3.1. Augmented Dickey–Fuller Unite Root Test
3.2. Johansen System Cointegration Test
3.3. Descriptive Statistics and Correlation Analysis
4. Analysis Results and Discussion
4.1. An Overview of Industrial Carbon Emissions
4.2. Decoupling Analysis
4.3. Decomposition Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Adom, P.K.; Bekoe, W.; Amuakwa-Mensah, F.; Mensah, J.T.; Botchway, E. Carbon dioxide emissions, economic growth, industrial structure, and technical efficiency: Empirical evidence from Ghana, Senegal, and Morocco on the causal dynamics. Energy 2012, 47, 314–325. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R. Natural gas from shale formation: A research profile. Renew. Sustain. Energy Rev. 2016, 57, 1–6. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, H.; Huang, X.; Chuai, X.; Wu, C. Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China. Energy 2015, 82, 414–425. [Google Scholar] [CrossRef]
- Allen, S.K.; Plattner, G.K.; Nauels, A.; Xia, Y.; Stocker, T.F. Climate Change 2013: The Physical Science Basis. An Overview of the Working Group 1 Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). 2014. Available online: http://www.ipcc.ch/report/ar5/wg1/ (accessed on 2 May 2014).
- Wang, Q.; Li, R. Drivers for energy consumption: A comparative analysis of China and India. Renew. Sustain. Energy Rev. 2016, 62, 954–962. [Google Scholar] [CrossRef]
- Li, W.; Younger, P.L.; Cheng, Y.; Zhang, B.; Zhou, H.; Liu, Q.; Dai, T.; Kong, S.; Jin, K.; Yang, Q. Addressing the CO2 emissions of the world’s largest coal producer and consumer: Lessons from the Haishiwan Coalfield, China. Energy 2015, 80, 400–413. [Google Scholar] [CrossRef]
- Wang, T.; Watson, J. China’s Carbon emissions and international trade: Implications for post-2012 policy. Clim. Policy 2008, 8, 577–587. [Google Scholar] [CrossRef]
- Zhao, M.; Tan, L.; Zhang, W.; Ji, M.; Liu, Y.; Yu, L. Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method. Energy 2010, 35, 2505–2510. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R. Impact of cheaper oil on economic system and climate change: A SWOT analysis. Renew. Sustain. Energy Rev. 2016, 54, 925–931. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R. Journey to burning half of global coal: Trajectory and drivers of China’s coal use. Renew. Sustain. Energy Rev. 2016, 58, 341–346. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, S.; Kong, L. Decomposition and Decoupling Analysis of Energy-Related Carbon Emissions from China Manufacturing. Math. Probl. Eng. 2015, 1, 1–9. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R. Cheaper Oil: A turning point in Paris climate talk? Renew. Sustain. Energy Rev. 2015, 52, 1186–1192. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X. Energy policies for managing China’s carbon emission. Renew. Sustain. Energy Rev. 2015, 50, 470–479. [Google Scholar] [CrossRef]
- Wang, Q. Cheaper oil challenge and opportunity for climate change. Environ. Sci. Technol. 2015, 49, 1997–1998. [Google Scholar] [PubMed]
- Wang, Q. China should aim for a total cap on emissions. Nature 2014, 512, 115. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q. China has the capacity to lead in carbon trading. Nature 2013, 493, 273. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q. China’s citizens must act to save their environment. Nature 2013, 497, 159–159. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, X. China’s electricity market-oriented reform: From an absolute to a relative monopoly. Energy Policy 2012, 51, 143–148. [Google Scholar] [CrossRef]
- Shahbaz, M.; Ozturk, I.; Afza, T.; Ali, A. Revisiting the environmental Kuznets curve in a global economy. Renew. Sustain. Energy Rev. 2013, 25, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Leitão, N.C. Economic Growth, Carbon Dioxide Emissions, Renewable Energy and Globalization. Int. J. Energy Econ. Policy 2014, 4, 391–399. [Google Scholar]
- Leitão, N.C.; Shahbaz, M. Carbon Dioxide Emissions, Urbanization and Globalization: A Dynamic Panel Data. Econ. Res. Guard. 2013, 3, 22–32. [Google Scholar]
- Sun, J. Accounting for energy use in China, 1980–94. Energy 1998, 23, 835–849. [Google Scholar] [CrossRef]
- Ma, C.; Stern, D.I. China’s changing energy intensity trend: A decomposition analysis. Energy Econ. 2008, 30, 1037–1053. [Google Scholar] [CrossRef]
- Liao, H.; Wei, Y.-M. China’s energy consumption: A perspective from Divisia aggregation approach. Energy 2010, 35, 28–34. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R. Sino-Venezuelan oil-for-loan deal—The Chinese strategic gamble? Renew. Sustain. Energy Rev. 2016, 64, 817–822. [Google Scholar] [CrossRef]
- Paul, S.; Bhattacharya, R.N. CO2 Emission from energy use in India: A Decomposition analysis. Energy Policy 2004, 32, 585–593. [Google Scholar] [CrossRef]
- Shahbaz, M.; Mallick, H.; Mahalik, M.K.; Sadorsky, P. The role of globalization on the recent evolution of energy demand in India: Implications for sustainable development. Energy Econ. 2016, 55, 52–68. [Google Scholar] [CrossRef]
- Shahbaz, M.; Loganathan, N.; Muzaffar, A.T.; Ahmed, K.; Jabran, M.A. How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model. Renew. Sustain. Energy Rev. 2016, 57, 83–93. [Google Scholar] [CrossRef]
- Shahbaz, M.; Hye, Q.M.A.; Tiwari, A.K.; Leitão, N.C. Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia. Renew. Sustain. Energy Rev. 2013, 25, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Leitão, N.C. Portuguese carbon dioxide emissions and economic growth: A time series analysis. Bull. Energy Econ. 2013, 1, 1–7. [Google Scholar]
- Lise, W. Decomposition of CO2 emissions over 1980–2003 in Turkey. Energy Policy 2006, 34, 1841–1852. [Google Scholar] [CrossRef]
- Magazzino, C. The relationship between real GDP, CO2 emissions, and energy use in the GCC countries: A time series approach. Cogent Econ. Financ. 2016, 4. [Google Scholar] [CrossRef]
- Magazzino, C. Is Per Capita Energy Use Stationary? Panel Data Evidence for the EMU Countries. Energy Explor. Exploit. 2016. [Google Scholar] [CrossRef]
- Magazzino, C. Economic growth, CO2 emissions and energy use in Israel. Int. J. Sustain. Dev. World Ecol. 2015, 22, 1–9. [Google Scholar] [CrossRef]
- Magazzino, C. A Panel VAR Approach of the Relationship among Economic Growth, CO2 Emissions, and Energy Use in the ASEAN-6 Countries. Int. J. Energy Econ. Policy 2014, 4, 546–553. [Google Scholar]
- Wang, Z.; Yang, L. Delinking indicators on regional industry development and carbon emissions: Beijing–Tianjin–Hebei economic band case. Ecol. Indic. 2015, 48, 41–48. [Google Scholar] [CrossRef]
- Blesl, M.; Das, A.; Fahl, U.; Remme, U. Role of energy efficiency standards in reducing CO2 emissions in Germany: An assessment with TIMES. Energy Policy 2007, 35, 772–785. [Google Scholar] [CrossRef]
- Lin, W.; Yang, J.; Chen, B. Temporal and spatial analysis of integrated energy and environment efficiency in China based on a green GDP index. Energies 2011, 4, 1376–1390. [Google Scholar] [CrossRef]
- Huang, J.; Yang, X.; Cheng, G.; Wang, S. A comprehensive eco-efficiency model and dynamics of regional eco-efficiency in China. J. Clean. Prod. 2014, 67, 228–238. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, C. Sources of production inefficiency and productivity growth in China: A global data envelopment analysis. Energy Econ. 2015, 49, 380–389. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Y.-M.; Zhang, X. A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs? Energy Policy 2012, 46, 574–584. [Google Scholar] [CrossRef]
- Chung, W.; Kam, M.; Ip, C. A study of residential energy use in Hong Kong by decomposition analysis, 1990–2007. Appl. Energy 2011, 88, 5180–5187. [Google Scholar] [CrossRef]
- Leitão, N.C. Energy Consumption and Foreign Direct Investment: A Panel Data Analysis for Portugal. Int. J. Energy Econ. Policy 2015, 5, 138–147. [Google Scholar]
- Wu, L.; Kaneko, S.; Matsuoka, S. Driving forces behind the stagnancy of China’s energy-related CO2 emissions from 1996 to 1999: The relative importance of structural change, intensity change and scale change. Energy Policy 2005, 33, 319–335. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Zou, J. Decomposition of energy-related CO2 emission in China: 1957–2000. Energy 2005, 30, 73–83. [Google Scholar] [CrossRef]
- Zhang, M.; Mu, H.; Ning, Y. Accounting for energy-related CO2 emission in China, 1991–2006. Energy Policy 2009, 37, 767–773. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, L.-C.; Wu, G.; Tsai, H.-T.; Wei, Y.-M. Changes in carbon intensity in China: Empirical findings from 1980–2003. Ecol. Econ. 2007, 62, 683–691. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, M.; Zhou, M. Using LMDI method to analyze transport sector CO2 emissions in China. Energy 2011, 36, 5909–5915. [Google Scholar] [CrossRef]
- Scholl, L.; Schipper, L.; Kiang, N. CO2 emissions from passenger transport: A comparison of international trends from 1973 to 1992. Energy Policy 1996, 24, 17–30. [Google Scholar] [CrossRef]
- Schipper, L.; Scholl, L.; Price, L. Energy use and carbon emissions from freight in 10 industrialized countries: An analysis of trends from 1973 to 1992. Transp. Res. Part D Transp. Environ. 1997, 2, 57–76. [Google Scholar] [CrossRef]
- Lakshmanan, T.; Han, X. Factors underlying transportation CO2 emissions in the USA: A decomposition analysis. Transp. Res. Part D Transp. Environ. 1997, 2, 1–15. [Google Scholar] [CrossRef]
- National Bureau of Statistics of the People’s Republic of China. The 2000 China Statistical Yearbook; China Statistics Press: Beijing, China, 2000. (In Chinese)
- National Bureau of Statistics of the People’s Republic of China. The 2005 China Statistical Yearbook; China Statistics Press: Beijing, China, 2005. (In Chinese)
- National Bureau of Statistics of the People’s Republic of China. The 2010 China Statistical Yearbook; China Statistics Press: Beijing, China, 2010. (In Chinese)
- National Bureau of Statistics of the People’s Republic of China. The 2013 China Statistical Yearbook; China Statistics Press: Beijing, China, 2013. (In Chinese)
- Wang, Q.; Chen, X.; Jha, A.N.; Rogers, H. Natural gas from shale formation–the evolution, evidences and challenges of shale gas revolution in United States. Renew. Sustain. Energy Rev. 2014, 30, 1–28. [Google Scholar] [CrossRef]
- Wang, Q. Nuclear safety lies in greater transparency. Nature 2013, 494, 403. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, X. Regulatory transparency—How China can learn from Japan’s nuclear regulatory failures? Renew. Sustain. Energy Rev. 2012, 16, 3574–3578. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X. Regulatory failures for nuclear safety–the bad example of Japan–implication for the rest of world. Renew. Sustain. Energy Rev. 2012, 16, 2610–2617. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X. Nuclear accident like Fukushima unlikely in the rest of the world? Environ. Sci. Technol. 2011, 45, 9831–9832. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q. Effective policies for renewable energy—The example of China’s wind power—lessons for China’s photovoltaic power. Renew. Sustain. Energy Rev. 2010, 14, 702–712. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.; Chew, E.P. Perfect decomposition techniques in energy and environmental analysis. Energy Policy 2003, 31, 1561–1566. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Ang, B.; Liu, N. Energy decomposition analysis: IEA model versus other methods. Energy Policy 2007, 35, 1426–1432. [Google Scholar] [CrossRef]
- De Freitas, L.C.; Kaneko, S. Decomposing the decoupling of CO2 emissions and economic growth in Brazil. Ecol. Econ. 2011, 70, 1459–1469. [Google Scholar] [CrossRef]
- Wood, R.; Lenzen, M. Zero-value problems of the logarithmic mean divisia index decomposition method. Energy Policy 2006, 34, 1326–1331. [Google Scholar] [CrossRef]
- Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Kaya, Y. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios. Available online: http://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=1021752 (assessed on 26 September 2016).
- Gray, D.; Anable, J.; Illingworth, L.; Graham, W. Decoupling the Link between Economic Growth, Transport Growth and Carbon Emissions in Scotland. 2006. Available online: https://www.researchgate.net/publication/267221393 (accessed on 31 December 2014).
- Li, W.; Sun, S.; Li, H. Decomposing the decoupling relationship between energy-related CO2 emissions and economic growth in China. Nat. Hazards 2015, 79, 977–997. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X.; Xu, Y.-C. Accident like the Fukushima unlikely in a country with effective nuclear regulation: Literature review and proposed guidelines. Renew. Sustain. Energy Rev. 2013, 17, 126–146. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X. Rethinking and reshaping the climate policy: Literature review and proposed guidelines. Renew. Sustain. Energy Rev. 2013, 21, 469–477. [Google Scholar] [CrossRef]
- Aiwen, Z.; Dong, L. Empirical Analysis on Decoupling Relationship Between Carbon Emission and Economic Growth in China. Technol. Econ. 2013, 1, 019. [Google Scholar]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef]
- Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P. Economic growth, carrying capacity, and the environment. Science 1995, 268, 520. [Google Scholar] [CrossRef] [PubMed]
- De Bruyn, S.M.; van den Bergh, J.C.; Opschoor, J.B. Economic growth and emissions: Reconsidering the empirical basis of environmental Kuznets curves. Ecol. Econ. 1998, 25, 161–175. [Google Scholar] [CrossRef]
- United States Agency for International Development. GHG Protocol Tool for Energy Consumption in China. 2013. Available online: http://www.ghgprotocol.org/calculation-tools/all-tools/ (accessed on 26 September 2016).
- Mackinnon, J.G. Numerical distribution functions for unit root and cointegration tests. J. Appl. Econ. 1996, 11, 601–618. [Google Scholar]
- Tiwari, A.K.; Shahbaz, M. Revisiting Purchasing Power Parity for India using threshold cointegration and nonlinear unit root test. Econ. Chang. Restruct. 2013, 47, 117–133. [Google Scholar] [CrossRef]
- Brizga, J.; Feng, K.; Hubacek, K. Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010. Energy 2013, 59, 743–753. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mandaraka, M. Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector. Energy Econ. 2007, 29, 636–664. [Google Scholar] [CrossRef]
Energy | Default Value of Carbon Content | Carbon Oxidation Rate | Average Lower Heating Value | Carbon Coefficient |
---|---|---|---|---|
tC/TJ | % | kJ/kg or kJ/m3 | kgCO2/kg or kgCO2/m3 | |
Raw Coal | 26.37 | 98% | 20,908 | 1.981 |
Washed coal | 25.41 | 98% | 26,344 | 2.405 |
Other washed coal | 25.41 | 98% | 10,454 | 0.955 |
Coal products | 33.6 | 98% | 17,793 | 2.148 |
#: briquette | 33.6 | 90% | 17,584 | 1.950 |
coal water slurry | 33.6 | 98% | 19,854 | 2.397 |
Pulverized coal | 33.6 | 98% | 20,933 | 2.527 |
Coke | 29.5 | 93% | 28,435 | 2.860 |
Natural Gas | 15.3 | 99% | 389,310 | 21.622 |
Liquefied natural gas | 15.3 | 100% | 51,498 | 2.889 |
Crude Oil | 20.1 | 98% | 41,816 | 3.020 |
Gasoline | 18.9 | 98% | 43,070 | 2.925 |
Kerosene | 19.6 | 98% | 43,070 | 3.033 |
Diesel Oil | 20.2 | 98% | 42,652 | 3.096 |
Fuel Oil | 21.1 | 98% | 41,816 | 3.170 |
Liquefied petroleum gas | 17.2 | 98% | 50,179 | 3.101 |
Refinery Gas | 18.2 | 98% | 46,055 | 3.012 |
Other petroleum products | 20.0 | 98% | 35,168 | 2.527 |
Item | Test Value of ADF | Critical Value | Judging Conclusion | |
---|---|---|---|---|
The logarithm | C | 3.548228 | −2.655194 | Nonstationary |
e | −3.381739 | −3.040391 ** | Stationary | |
a | −54.84574 | −3.831511 *** | Stationary | |
P | 0.361199 | −2.660551 | Nonstationary | |
n1 | −0.926663 | −2.655194 | Nonstationary | |
n2 | −0.875207 | −2.655194 | Nonstationary | |
n3 | −2.292157 | −2.666593 | Nonstationary | |
n4 | −1.151329 | −2.660551 | Nonstationary | |
n5 | −1.003078 | −2.660551 | Nonstationary | |
n6 | −0.145338 | −2.655194 | Nonstationary | |
n7 | −0.718707 | −2.655194 | Nonstationary | |
n8 | 1.657641 | −2.655194 | Nonstationary | |
First-order difference | C | −0.328314 | −2.666593 | Nonstationary |
P | −2.734556 | −2.660551 * | Stationary | |
n1 | −2.335950 | −2.660551 | Nonstationary | |
n2 | −3.367909 | −3.040391 ** | Stationary | |
n3 | −2.330250 | −2.660551 | Nonstationary | |
n4 | −3.946359 | −3.857386 *** | Stationary | |
n5 | −2.656369 | −2.660551 | Nonstationary | |
n6 | −4.781514 | −3.857386 *** | Stationary | |
n7 | −3.861933 | −3.857386 *** | Stationary | |
n8 | −3.124053 | −3.040391 ** | Stationary | |
Second-order difference | C | −4.264208 | −3.886751 *** | Stationary |
n1 | −4.958637 | −3.886751 *** | Stationary | |
n3 | −5.720148 | −3.886751 *** | Stationary | |
n5 | −5.429637 | −3.886751 *** | Stationary |
Hypothesized No. of CE(s) | Eigen Value | Trace Statistic | 0.05 Critical Value | Prob. ** |
---|---|---|---|---|
None * | 0.957631 | 117.6483 | 47.85613 | 0.0000 |
At most 1 * | 0.798904 | 60.74429 | 29.79707 | 0.0000 |
At most 2 * | 0.745667 | 31.87281 | 15.49471 | 0.0001 |
At most 3 * | 0.330752 | 7.228821 | 3.841466 | 0.0072 |
Mean | Standard Deviation | Variance | Kurtosis | Skewness | Minimum | Maximum | Confidence (95%) | |
---|---|---|---|---|---|---|---|---|
C | 563,331.074840 | 257,289.677671 | 66,197,978,236.160500 | −0.785434 | 0.701214 | 300,319.042650 | 1,114,708.900140 | 120,415.275773 |
P | 129,022.900000 | 4909.380483 | 24,102,016.726316 | −0.951182 | −0.357183 | 119,850.000000 | 136,072.000000 | 2297.660793 |
a | 4749.559542 | 2662.863925 | 7,090,844.283580 | −0.830278 | 0.673245 | 1621.293283 | 9971.630243 | 1246.258679 |
e | 0.000381 | 0.000089 | 0.000000 | 0.832222 | 1.358377 | 0.000288 | 0.000591 | 0.000042 |
n1 | 0.653498 | 0.019937 | 0.000397 | −0.212380 | −0.776701 | 0.613648 | 0.682283 | 0.009331 |
n2 | 0.090363 | 0.013167 | 0.000173 | −1.881357 | 0.245945 | 0.074478 | 0.109783 | 0.006163 |
n3 | 0.192158 | 0.020063 | 0.000403 | −0.483370 | 0.716242 | 0.164170 | 0.231855 | 0.009390 |
n4 | 0.005366 | 0.002760 | 0.000008 | −1.396561 | 0.382409 | 0.001825 | 0.010065 | 0.001292 |
n5 | 0.000472 | 0.000298 | 0.000000 | −1.194223 | 0.470102 | 0.000096 | 0.000957 | 0.000140 |
n6 | 0.013423 | 0.003917 | 0.000015 | −0.718475 | −0.478773 | 0.005786 | 0.019091 | 0.001833 |
n7 | 0.023779 | 0.012010 | 0.000144 | −1.675945 | −0.129722 | 0.007278 | 0.041438 | 0.005621 |
n8 | 0.020943 | 0.005354 | 0.000029 | 0.119194 | 0.972847 | 0.014576 | 0.032483 | 0.002506 |
P | a | e | n1 | n2 | n3 | n4 | n5 | n6 | n7 | n8 | |
---|---|---|---|---|---|---|---|---|---|---|---|
CO2 | 0.904 ** | 0.99 ** | −0.666 ** | 0.505 * | 0.901 ** | −0.464 * | −0.876 ** | −0.817 ** | −0.914 ** | −0.949 ** | 0.941 ** |
P | 0.935 ** | −0.909 ** | 0.142 | 0.858 ** | −0.088 | −0.968 ** | −0.573 ** | −0.716 ** | −0.955 ** | 0.890 ** | |
a | −0.743 ** | 0.397 | 0.876 ** | −0.355 | −0.886 ** | −0.745 ** | −0.880 ** | −0.951 ** | 0.970 ** | ||
e | 0.260 | −0.628 ** | −0.309 | 0.843 ** | 0.194 | 0.410 | 0.773 ** | −0.744 ** | |||
n1 | 0.465 * | −0.982 ** | −0.180 | −0.838 ** | −0.649 ** | −0.380 | 0.280 | ||||
n2 | −0.469 ** | −0.879 ** | −0.808 ** | −0.857 ** | −0.935 ** | 0.789 ** | |||||
n3 | 0.129 | 0.810 ** | 0.645 ** | 0.328 | −0.256 | ||||||
n4 | 0.622 ** | 0.708 ** | 0.935 ** | −0.816 ** | |||||||
n5 | 0.869 ** | 0.753 ** | −0.629 ** | ||||||||
n6 | 0.806 ** | −0.844 ** | |||||||||
n7 | −0.870 ** |
Year | The Carbon Emissions from Different Kinds of Energy | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
Raw Coal | Coke | Crude Oil | Gasoline | Kerosene | Diesel Oil | Fuel Oil | Natural Gas | 10 Thousand Tons | |
1994 | 213,492 | 25,174 | 42,180 | 2193 | 87 | 3404 | 10,556 | 3233 | 300,319 |
1995 | 232,908 | 29,778 | 44,443 | 2376 | 136 | 3684 | 10,798 | 3338 | 327,461 |
1996 | 245,418 | 30,005 | 47,386 | 2620 | 131 | 4202 | 10,165 | 3399 | 343,324 |
1997 | 241,030 | 30,271 | 51,937 | 2115 | 141 | 5357 | 10,217 | 3653 | 344,721 |
1998 | 227,721 | 30,632 | 52,012 | 1982 | 189 | 4167 | 10,199 | 3708 | 330,609 |
1999 | 223,372 | 28,861 | 56,701 | 1891 | 238 | 4665 | 9661 | 3896 | 329,285 |
2000 | 221,337 | 28,830 | 63,577 | 1761 | 255 | 4943 | 9431 | 4368 | 334,502 |
2001 | 225,057 | 30,426 | 63,928 | 1808 | 261 | 5070 | 9874 | 4709 | 341,134 |
2002 | 246,031 | 34,257 | 67,520 | 1849 | 265 | 5363 | 9354 | 4920 | 369,558 |
2003 | 298,276 | 40,469 | 74,801 | 1807 | 266 | 5667 | 10,261 | 5791 | 437,337 |
2004 | 356,848 | 48,566 | 86,449 | 1484 | 185 | 6207 | 11,318 | 6349 | 517,406 |
2005 | 401,042 | 62,808 | 90,477 | 1351 | 174 | 6475 | 9589 | 7650 | 579,565 |
2006 | 446,793 | 78,160 | 96,886 | 1370 | 146 | 6073 | 9624 | 8951 | 648,004 |
2007 | 485,885 | 86,035 | 102,281 | 1680 | 137 | 5334 | 8350 | 11,020 | 700,723 |
2008 | 526,102 | 85,104 | 106,704 | 1714 | 149 | 7793 | 6465 | 11,494 | 745,526 |
2009 | 554,459 | 90,786 | 114,685 | 1963 | 97 | 7272 | 4823 | 12,495 | 786,581 |
2010 | 586,439 | 96,049 | 129,004 | 2017 | 122 | 6699 | 7536 | 14,860 | 842,726 |
2011 | 646,262 | 108,829 | 132,459 | 1769 | 104 | 5648 | 7165 | 18,161 | 920,396 |
2012 | 665,051 | 112,291 | 140,610 | 1700 | 97 | 5411 | 7106 | 20,471 | 952,736 |
2013 | 798,654 | 130,685 | 146,480 | 1531 | 83 | 5189 | 7675 | 24,413 | 1,114,709 |
Year | ∆Carbon/Carbon | ∆IOV/IOV | ε | Status |
---|---|---|---|---|
1995 | 0.0904 | 0.1400 | 0.6456 | weak decoupling |
1996 | 0.0484 | 0.1250 | 0.3875 | weak decoupling |
1997 | 0.0041 | 0.1130 | 0.0360 | weak decoupling |
1998 | −0.0409 | 0.0890 | −0.4600 | strong decoupling |
1999 | −0.0040 | 0.0850 | −0.0471 | strong decoupling |
2000 | 0.0158 | 0.0980 | 0.1617 | weak decoupling |
2001 | 0.0198 | 0.0870 | 0.2279 | weak decoupling |
2002 | 0.0833 | 0.1000 | 0.8332 | expansive decoupling |
2003 | 0.1834 | 0.1280 | 1.4329 | expansive negative decoupling |
2004 | 0.1831 | 0.1150 | 1.5920 | expansive negative decoupling |
2005 | 0.1201 | 0.1160 | 1.0357 | expansive decoupling |
2006 | 0.1181 | 0.1290 | 0.9154 | expansive decoupling |
2007 | 0.0814 | 0.1490 | 0.5460 | weak decoupling |
2008 | 0.0639 | 0.0990 | 0.6458 | weak decoupling |
2009 | 0.0551 | 0.0880 | 0.6258 | weak decoupling |
2010 | 0.0714 | 0.1260 | 0.5665 | weak decoupling |
2011 | 0.0922 | 0.1080 | 0.8534 | expansive decoupling |
2012 | 0.0351 | 0.0790 | 0.4448 | weak decoupling |
2013 | 0.1700 | 0.0760 | 2.2369 | expansive negative decoupling |
Year | ∆Cn | ∆Ce | ∆Ca | ∆Cp | ∆C |
---|---|---|---|---|---|
1995 | 816.7404 | −14,773.8911 | 37,790.6448 | 3308.9264 | 27,142.4205 |
1996 | −111.6941 | −23,519.3564 | 36,001.9293 | 3492.0859 | 15,862.9648 |
1997 | −1538.3893 | −33,887.4333 | 33,363.8140 | 3458.8655 | 1396.8570 |
1998 | −492.9173 | −42,401.3066 | 25,696.4680 | 3085.1055 | −14,112.6504 |
1999 | −1647.0613 | −26,588.8563 | 24,213.0779 | 2699.1920 | −1323.6478 |
2000 | −1876.3224 | −23,928.6216 | 28,506.9082 | 2514.9781 | 5216.9423 |
2001 | 113.2695 | −21,661.2785 | 25,832.0187 | 2347.8982 | 6631.9079 |
2002 | 1024.6759 | −6448.5367 | 31,556.6245 | 2290.9983 | 28,423.7621 |
2003 | 1885.9979 | 17,421.3899 | 46,054.8216 | 2417.6521 | 67,779.8615 |
2004 | 1405.2259 | 26,825.5620 | 49,041.3097 | 2796.1024 | 80,068.2000 |
2005 | 2894.1806 | −844.2010 | 56,883.0005 | 3226.3559 | 62,159.3360 |
2006 | 2048.6282 | −7,990.7085 | 71,145.3674 | 3235.8213 | 68,439.1083 |
2007 | 859.7207 | −41,745.6533 | 90,122.1957 | 3482.4987 | 52,718.7618 |
2008 | 379.9409 | −23,801.8453 | 64,553.6203 | 3671.8475 | 44,803.5634 |
2009 | −46.8693 | −23,487.1678 | 60,860.5609 | 3727.5735 | 41,054.0972 |
2010 | −2770.9293 | −37,706.3690 | 92,720.8006 | 3901.4788 | 56,144.9810 |
2011 | 2495.6581 | −15,163.4641 | 86,117.7331 | 4220.3934 | 77,670.3205 |
2012 | −1655.7798 | −37,206.5149 | 66,564.2360 | 4638.2381 | 32,340.1793 |
2013 | 5333.7840 | 81,090.8460 | 70,472.6315 | 5075.6306 | 161,972.8921 |
Year | ∆Cn | ∆Ce | ∆Ca | ∆Cp | ∆C |
---|---|---|---|---|---|
1995 | 816.7404 | −14,773.9 | 37,790.64 | 3308.926 | 27,142.42 |
1996 | 705.0464 | −38,293.2 | 73,792.57 | 6801.012 | 43,005.39 |
1997 | −833.343 | −72,180.7 | 107,156.4 | 10,259.88 | 44,402.24 |
1998 | −1326.26 | −114,582 | 132,852.9 | 13,344.98 | 30,289.59 |
1999 | −2973.32 | −141,171 | 157,065.9 | 16,044.18 | 28,965.94 |
2000 | −4849.64 | −165,099 | 185,572.8 | 18,559.15 | 34,182.89 |
2001 | −4736.37 | −186,761 | 211,404.9 | 20,907.05 | 40,814.79 |
2002 | −3711.7 | −193,209 | 242,961.5 | 23,198.05 | 69,238.56 |
2003 | −1825.7 | −175,788 | 289,016.3 | 25,615.7 | 137,018.4 |
2004 | −420.475 | −148,962 | 338,057.6 | 28,411.8 | 217,086.6 |
2005 | 2473.706 | −149,807 | 394,940.6 | 31,638.16 | 279,246 |
2006 | 4522.334 | −157,797 | 466,086 | 34,873.98 | 347,685.1 |
2007 | 5382.055 | −199,543 | 556,208.2 | 38,356.48 | 400,403.8 |
2008 | 5761.996 | −223,345 | 620,761.8 | 42,028.33 | 445,207.4 |
2009 | 5715.126 | −246,832 | 681,622.4 | 45,755.9 | 486,261.5 |
2010 | 2944.197 | −284,538 | 774,343.2 | 49,657.38 | 542,406.5 |
2011 | 5439.855 | −299,702 | 860,460.9 | 53,877.77 | 620,076.8 |
2012 | 3784.075 | −336,908 | 927,025.1 | 58,516.01 | 652,417 |
2013 | 9117.859 | −255,817 | 997,497.8 | 63,591.64 | 814,389.9 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Li, R.; Jiang, R. Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China. Sustainability 2016, 8, 1059. https://doi.org/10.3390/su8101059
Wang Q, Li R, Jiang R. Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China. Sustainability. 2016; 8(10):1059. https://doi.org/10.3390/su8101059
Chicago/Turabian StyleWang, Qiang, Rongrong Li, and Rui Jiang. 2016. "Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China" Sustainability 8, no. 10: 1059. https://doi.org/10.3390/su8101059
APA StyleWang, Q., Li, R., & Jiang, R. (2016). Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China. Sustainability, 8(10), 1059. https://doi.org/10.3390/su8101059