Environmental Performance of Electricity Generation Based on Resources: A Life Cycle Assessment Case Study in Turkey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
2.1.1. Functional Unit
2.1.2. System Description
2.1.3. System Boundary
2.2. Life Cycle Inventory
● Coal-fired TPPs
● Natural gas-fired TPPs
● Hydroelectric power plants (HPPs)
● Wind power
● Geothermal
● Nuclear power plants (NPPs)
● Solar-photovoltaic power
2.3. Life Cycle Impact Assessment and Interpretation
● Depletion of Abiotic Resources
● Global Warming (GW)
● Ozone Layer Depletion (steady-state)
● Human Toxicity, Freshwater Aquatic Ecotoxicity, Marine Aquatic Ecotoxicology, and Terrestrial Ecotoxicity
● Photochemical Oxidation (high NOx)
● Acidification
● Eutrophication (fate not included)
2.4. Uncertainty of the Life Cycle Impact Assessment
3. Results and Discussions
3.1. Life Cycle Impact Assessment
3.2. Uncertainty Analysis of Life Cycle Impact Results
3.3. Comparison of the Results with the Literature
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- King, C.; Maxwell, J.; Donovan, A. Comparing world economic and net energy metrics, part 1: Single technology and commodity perspective. Energies 2015, 8, 12949–12974. [Google Scholar] [CrossRef]
- International Energy Agency. Key Trends in CO2 Emissions, Excerpt from: CO2 Emissions from Fuel Combustion. Available online: http://www.iea.org/publications/freepublications/publication/CO2EmissionsTrends.pdf (accessed on 14 June 2016).
- Turkish Statistical Institute. Available online: http://www.tuik.gov.tr/PreHaberBultenleri.do?id=16174 (accessed on 14 August 2016).
- International Energy Agency. Available online: http://www.iea.org/statistics/statisticssearch/report/?country=TURKEY&product=indicators&year=2012 (accessed on 5 August 2016).
- Kaya, D. Renewable energy policies in Turkey. Renew. Sustain. Energy Rev. 2006, 10, 152–163. [Google Scholar] [CrossRef]
- Elektrik Uretim A.S. Turkish Electricity Generation Company—Annual Report. 2012. Available online: http://www.euas.gov.tr/apk%20daire%20baskanligi%20kitapligi/YILLIK_RAPOR_2012.pdf (accessed on 29 March 2016). [Google Scholar]
- Turkish Ministry of Energy and Natural Resources, Blue Book. 2014. Available online: http://www.enerji.gov.tr/tr-TR/Mavi-Kitaplar (accessed on 10 June 2016). (In Turkish)
- Turkish Ministry of Energy and Natural Resources, Electricity Energy Market and Supply Security Strategy Paper. Available online: http://www.enerji.gov.tr/File/?path=ROOT%2F1%2FDocuments%2FBelge%2FArz_Guvenligi_Strateji_Belgesi.pdf (accessed on 29 March 2015).
- Laurent, A.; Espinosa, N. Environmental impacts of electricity generation at global, regional and national scales in 1980–2011: What can we learn for future energy planning? Energy Environ. Sci. 2015, 8, 689–701. [Google Scholar] [CrossRef] [Green Version]
- Hondo, H. Life cycle GHG emission analysis of power generation systems: Japanese case. Energy 2005, 30, 2042–2056. [Google Scholar] [CrossRef]
- Peiu, N. Life cycle inventory study of the electrical energy production in Romania. Int. J. Life Cycle Assess. 2007, 12, 225–229. [Google Scholar] [CrossRef]
- Turconi, R.; O’Dwyer, C.; Flynn, D.; Astrup, T. Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland. Appl. Energy 2014, 131, 1–8. [Google Scholar] [CrossRef]
- Kannan, R.; Leong, K.C.; Osman, R.; Ho, H.K. Life cycle energy, emissions and cost inventory of power generation technologies in Singapore. Renew. Sustain. Energy Rev. 2007, 11, 702–715. [Google Scholar] [CrossRef]
- Messagie, M.; Mertens, J.; Oliveira, L.; Rangaraju, S.; Sanfelix, J.; Coosemans, T.; Van Mierlo, J.; Macharis, C. The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment. Appl. Energy 2014, 134, 469–476. [Google Scholar] [CrossRef]
- Garcia, R.; Marques, P.; Freire, F. Life-cycle assessment of electricity in Portugal. Appl. Energy 2014, 134, 563–572. [Google Scholar] [CrossRef]
- Stamford, L.; Azapagic, A. Life cycle sustainability assessment of UK electricity scenarios to 2070. Energy Sustain. Dev. 2014, 23, 194–211. [Google Scholar] [CrossRef]
- Ou, X.; Xiaoyu, Y.; Zhang, X. Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in china. Appl. Energy 2011, 88, 289–297. [Google Scholar] [CrossRef]
- Foidart, F.; Oliver-Solá, J.; Gasol, C.M.; Gabarrell, X.; Rieradevall, J. How important are current energy mix choices on future sustainability? Case study: Belgium and Spain—Projections towards 2020–2030. Energy Policy 2010, 38, 5028–5037. [Google Scholar] [CrossRef]
- Felix, M.; Gheewala, S.H. Environmental assessment of electricity production in Tanzania. Energy Sustain. Dev. 2012, 16, 439–447. [Google Scholar] [CrossRef]
- Turconi, R.; Tonini, D.; Nielsen, C.F.B.; Simonsen, C.G.; Astrup, T. Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a danish case study. Appl. Energy 2014, 132, 66–73. [Google Scholar] [CrossRef]
- Gujba, H.; Mulugetta, Y.; Azapagic, A. Environmental and economic appraisal of power generation capacity expansion plan in Nigeria. Energy Policy 2010, 38, 5636–5652. [Google Scholar] [CrossRef]
- Santoyo-Castelazo, E.; Gujba, H.; Azapagic, A. Life cycle assessment of electricity generation in Mexico. Energy 2011, 36, 1488–1499. [Google Scholar] [CrossRef]
- Brizmohun, R.; Ramjeawon, T.; Azapagic, A. Life cycle assessment of electricity generation in mauritius. J. Clean. Prod. 2014, 16, 1727–1734. [Google Scholar] [CrossRef]
- Liang, X.; Wang, Z.; Zhou, Z.; Huang, Z.; Zhou, J.; Cen, K. Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in china. J. Clean. Prod. 2013, 39, 24–31. [Google Scholar] [CrossRef]
- International Organization for Standardization. Environmental Management—Life Cycle Assessment—Principles and Framework; International Standard ISO 14040; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization. Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Standard ISO 14040; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Turkish Ministry of Energy and Natural Resources. Long-Range Energy Alternatives Planning System (Leap), General Directorate of Energy Affairs; General Directorate of Energy Affairs: Ankara, Turkey, 2014.
- Republic of Turkey Energy Market Regulatory Authority. Natural Gas Marketing Report. Available online: http://www.Epdk.Org.Tr/documents/dogalgaz/rapor_yayin/dpd_rapor_yayin_sektor_raporu_2013.Pdf (accessed on 30 October 2015).
- Kiliç, A.M. Turkey’s natural gas necessity, consumption and future perspectives. Energy Policy 2006, 34, 1928–1934. [Google Scholar] [CrossRef]
- Turkish Wind Energy Association. Turkish Wind Power Plant Atlas. Available online: http://www.tureb.com.tr/attachments/article/173/TURSAT_2014_1_Turkiye_Ruzgar_Santralleri_Atlasii_Ocak.pdf (accessed on 10 June 2016).
- National Geospatial. Distances between Ports, 11th ed.Intelligence Agency: Bethesda, Maryland, 2001.
- Serpen, U.; Aksoy, N.; Öngür, T.; Korkmaz, E.D. Geothermal energy in turkey: 2008 update. Geothermics 2009, 38, 227–237. [Google Scholar] [CrossRef]
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; Oers, L.; Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. Handbook on life cycle assessment. Operational Guide to the ISO Standards; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- SimaPro Methods Library. Available online: https://www.pre-sustainability.com/download/manuals/DatabaseManualMethods.pdf (accessed on 9 August 2016).
OECD European Countries | CO2 Emissions 1 (tCO2/Capita) |
---|---|
Norway | 7.08 |
Sweden | 4.13 |
Austria | 7.74 |
Belgium | 8.03 |
France | 4.75 |
Germany | 9.09 |
Netherland | 9.36 |
Denmark | 6.63 |
UK | 7.24 |
Spain | 5.57 |
Italy | 6.08 |
Turkey | 4.04 (4.14 2) |
References | Country | Studied Electricity Generation Systems | Considered Environmental Parameters |
---|---|---|---|
Hondo [10] | Japan | Coal-fired, oil-fired, LNG-fired, LNG-combined cycle, nuclear, hydropower, geothermal, wind power and solar-photovoltaic. | Greenhouse gas emissions. |
Peiu [11] | Romania | Lignite, brown coal (domestic and import), heavy oil (domestic, land), heavy oil (domestic and import), natural gas (domestic and import), hydropower, and nuclear energy. | CO2, SOx, NOx, CH4, non-methanic volatile organic compounds (NMVOC), CO, N2O, particulate matter. |
Turconi et al. [12] | Ireland | Combined cycle gas turbine, open cycle, gas turbine, coal, distillate oil, gas condensing, peat. | CO2, NOx, and SO2. |
Kannan et al. [13] | Singapore | Oil-fired steam turbine power plant, Natural gas-fired combined cycle plant, orimulsion-fired steam turbine power plant, Solar PV system, proton exchange membrane fuel cell. | CO2, CH4, and N2O. |
Messagie et al. [14] | Belgium | Nuclear combustible, oil, coal, natural gas, bio waste, blast furnace gas, and wood, photovoltaic cells, hydro installations, and wind turbines. | Global warming potential. |
Garcia et al. [15] | Portugal | Coal, fuel, oil, natural gas, hydro, wind, waste incineration, biogas and photovoltaic. | Non-renewable fossil energy demand, global warming, abiotic depletion, acidification, eutrophication, photochemical oxidation, and ozone layer depletion. |
Stamford and Azapagic [16] | UK | Shale gas, conventional gas, oil, nuclear, offshore, wind and solar photovoltaics. | Abiotic resources, eutrophication, and freshwater, marine and human toxicities. |
Ou et al. [17] | China | Coal, natural gas, oil, diesel, gasoline. | Primary fossil energy consumption and greenhouse gas emissions (CO2, CH2, N2O). |
Foidart et al. [18] | Belgium and Spain | Lignite, solar, biogas, biomass, wind, hydraulic, derived gases, natural gas, fuel, coal, nuclear. | Acidification, global warming, eutrophication, photochemical oxidation, abiotic depletion, ozone layer depletion and human toxicity. |
Felix and Gheewala [19] | Tanzania | Natural gas, coal, oil, hydropower. | Abiotic resource depletion potential, eutrophication potential, climate change potential, acidification potential. |
Turconi et al. [20] | Denmark | Wind, hydro, thermal power plants, biogas, coal, gas oil, natural gas, refinery gas, residual oil, straw, waste, wood. | Global warming, ozone depletion, depletion of fossil and abiotic resources, photochemical oxidant formation, particulate matter, terrestrial acidification, marine eutrophication, freshwater eutrophication, human toxicity, ecotoxicity. |
Gujba et al. [21] | Nigeria | Gas, coal, hydro, solar-PV, biomass, wind. | Global warming potential, abiotic depletion potential, ozone layer depletion, human toxicity potential, freshwater aquatic eco-toxicity potential, marine toxicity potential, terrestrial toxicity potential, photochemical oxidation potential, acidification potential, eutrophication potential, not including terrestrial, fresh water and marine ecotoxicity. |
Santoyo-Castelazo et al. [22] | Mexico | Coal, oil, natural gas, hydro-power, geothermal, wind, nuclear. | |
Brizmohun et al. [23] | Mauritius | Coal, fuel oil, bagasse, hydro-plants. | |
Liang et al. [24] | China | Integrated gasification combined cycle, sub-critical coal power generation, super-critical coal power generation, super-critical coal power generation. |
2012 [6] | 2023 1 | |
---|---|---|
Total electricity generation amount (GWh) | 239,496 | 384,389 |
Electricity generation mix | ||
Natural gas (%) | 43.6 | 14.77 |
Coal (%) 2 | 28.1 | 18.64 |
Hydro (%) | 24.2 | 39.26 |
Wind (%) | 2.4 | 15.95 |
Geothermal (%) | 0.4 | 0.96 |
Solar (%) | - | 0.23 |
Nuclear (%) | - | 9.84 |
Others (%) | 1.3 (ignored) | 0.35 (ignored) |
Total (%) | 100.0 | 100.0 |
Turbine Parts | 600 kW 1 | 800 kW 2 | 2MW 3 |
---|---|---|---|
Nacelle | 20.4 | 22 | 69 |
Rotor (blades and hub) | 7.2 | 10 | 24.5 |
Tower | 28.9 | 40 | 137 |
Total | 56.5 | 72 | 230.5 |
Impact Categories | 2012 | 2023 |
---|---|---|
ADe (g Sb eq./kWh) | 2.83 × 10−4 | 2.42 × 10−4 |
ADff (MJ/kWh) | 6.67 | 4.44 |
GW (g CO2 eq /kWh) | 802 | 468 |
OD (g CFC-11 eq./kWh) | 1.29 × 10−5 | 6.06 × 10−6 |
HT (g 1,4-DB eq./kWh) | 49.5 | 61.9 |
FAET (g 1,4-DB eq./kWh) | 3.46 | 2.51 |
MAET (g 1,4-DB eq./kWh) | 24.2 × 103 | 18.2 × 103 |
TET (g 1,4-DB eq./kWh) | 0.226 | 0.247 |
PO (g C2H4 eq./kWh) | 2.26 | 0.873 |
Acid. (g SO2 eq./kWh) | 9.79 | 6.23 |
Eutroph. (g PO43− eq./kWh) | 0.569 | 0.317 |
Country | Impact Assessment Method | GW (g CO2 eq/kWh) | Acidification (g SO2 eq/kWh) | Eutrophication (g PO43− eq/kWh) |
---|---|---|---|---|
This study (2012) | CML-IA (v.3.00) | 802 | 9.79 | 0.57 |
This study (2023) | CML-IA (v.3.00) | 468 | 6.23 | 0.32 |
Portugal [15] | CML 2 v2.05 | 456 | 1.22 | 0.86 |
Spain [18] | CML2 Baseline 2000 | 542 | 4.93 | 0.248 |
Belgium [18] | CML2 Baseline 2000 | 320 | 1.00 | 0.09 |
Tanzania [19] | CML 2001 | 560 | 4.53 | 0.70 |
Nigeria [21] | CML 2 Baseline 2001 | 370 | 0.22 | 0.06 |
Mexico [22] | CML 2 Baseline 2001 | 571 | 6.59 | 0.30 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Günkaya, Z.; Özdemir, A.; Özkan, A.; Banar, M. Environmental Performance of Electricity Generation Based on Resources: A Life Cycle Assessment Case Study in Turkey. Sustainability 2016, 8, 1097. https://doi.org/10.3390/su8111097
Günkaya Z, Özdemir A, Özkan A, Banar M. Environmental Performance of Electricity Generation Based on Resources: A Life Cycle Assessment Case Study in Turkey. Sustainability. 2016; 8(11):1097. https://doi.org/10.3390/su8111097
Chicago/Turabian StyleGünkaya, Zerrin, Alp Özdemir, Aysun Özkan, and Müfide Banar. 2016. "Environmental Performance of Electricity Generation Based on Resources: A Life Cycle Assessment Case Study in Turkey" Sustainability 8, no. 11: 1097. https://doi.org/10.3390/su8111097
APA StyleGünkaya, Z., Özdemir, A., Özkan, A., & Banar, M. (2016). Environmental Performance of Electricity Generation Based on Resources: A Life Cycle Assessment Case Study in Turkey. Sustainability, 8(11), 1097. https://doi.org/10.3390/su8111097