Simulation of Sediment Yield in a Semi-Arid River Basin under Changing Land Use: An Integrated Approach of Hydrologic Modelling and Principal Component Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Location
2.2. Model Selection and Description
2.3. Data Requirement and Sources
2.3.1. Hydro-Meteorological and Sediment Data
2.3.2. Soil Data
2.3.3. Land Use/Cover Dataset
2.3.4. Digital Elevation Model (DEM) and Basin Discretization
2.4. Parameter Sensitivity Analysis, Calibration and Validation
2.5. Model Performance Statistics
2.6. Model Application and Statistical Analysis
3. Results and Discussion
3.1. Sensitivity Analysis
3.2. Calibration and Validation
3.3. Land Use/Land Cover Changes (LULCC) Impacts on Sediment Yield
3.4. Contributions of Individual Land Use Changes on Sediment Yield
4. Conclusions
Acknowledgment
Author Contributions
Conflicts of Interest
References
- Van Rompaey, A.J.J.; Verstraeten, G.; van Oost, K.; Govers, G.; Poessen, J. Modelling mean annual sediment yield using a distributed approach. Earth Surf. Proc. Land. 2001, 26, 1221–1236. [Google Scholar] [CrossRef]
- Akrasi, S.A. Sediment discharges from Ghanaian rivers into the sea. West Afr. J. Appl. Ecol. 2011, 18, 1–13. [Google Scholar] [CrossRef]
- Asres, M.T.; Awulachew, S.L. SWAT based runoff and sediment yield modeling: A case study of the Gumera watershed in the Blue Nile basin. Ecohydrol. Hydrobiol. 2010, 10, 191–200. [Google Scholar] [CrossRef]
- Basson, G.; Di Silvio, G. Erosion and Sediment Dynamics from Catchment to Coast, a Northern Perspective and a Southern Perspective; Technical Documents in Hydrology, No. 82; UNESCO: Paris, France, 2008. [Google Scholar]
- Cai, T.; Li, Q.; Yu, M.; Lu, G.; Cheng, L.; Wei, X. Investigation into the impacts of land use change on sediment yield characteristics in the upper Huaihe River basin, China. Phys. Chem. Earth Parts A/B/C 2012, 53, 1–9. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J. Modelling of soil erosion and sediment transport in the East River Basin in southern China. Sci. Total Environ. 2012, 441, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Ellison, C.A.; Kiesling, R.L.; Fallon, J.D. Correlating streamflow, turbidity and suspended-sediment concentration in Minnesota’s Wild River. In Proceedinds of the 2nd Joint Federal Interagency Conference, Las Vegas, NV, USA, 27 June−1 July 2010.
- Lu, X.X.; Ran, L.S.; Liu, S.; Jiang, T.; Zhang, S.R.; Wang, J.J. Sediment loads response to climate change: A preliminary study of eight large Chinese rivers. Int. J. Sed. Res. 2013, 28, 1–14. [Google Scholar] [CrossRef]
- Rovira, A.; Alcaraz, C.; Ibanez, C. Spatial and temporal dynamics of suspended load at a cross section: The lowermost Ebro River (Catalonia, Spain). Water Res. 2012, 46, 3671–3681. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Fang, N.F.; Zhang, P.C.; Shi, Z.H. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. J. Hydrol. 2013, 484, 26–37. [Google Scholar] [CrossRef]
- Boucher, K.; Van Breda Weaver, A. Sediment yield in South Africa—A preliminary geographical analaysis. GeoJournal 1991, 23, 7–17. [Google Scholar] [CrossRef]
- Bussi, G.; Dadson, S.J.; Prudhomme, C.; Whitehead, P.G. Modelling the future impacts of climate and land use change on suspended transport in the River Thames (UK). J. Hydrol. 2016, 542, 357–372. [Google Scholar] [CrossRef]
- Mullan, D. Soil erosion under the impacts of future climate change: Assessing the statistical significance of future changes and the potential on-site and offsite problems. Catena 2013, 109, 234–246. [Google Scholar] [CrossRef]
- Nunes, J.P.; Seixas, J.; Keizer, J.J.; Ferreira, A.J.D. Sensitivity of runoff and soil erosion to climate change in two Mediterranean watersheds. Part II: Assessing impacts from changes in storm rainfall, soil moisture and vegetation cover. Hydrol. Process. 2009, 23, 1212–1220. [Google Scholar] [CrossRef]
- Pruski, F.F.; Nearing, M.A. Climate-induced changes in erosion during the 21st century for eight US locations. Water Resour. Res. 2002, 38, 34-1–34-11. [Google Scholar] [CrossRef]
- Nearing, M.A.; Pruski, F.F.; O’Neill, M.R. Expected climate change impacts on soil erosion rates: A review. J. Soil Water Conserv. 2004, 59, 43–50. [Google Scholar]
- Routschek, A.; Schmidt, J.; Kreienkamp, F. Impact of climate change on soil erosion—a high-resolution projection on catchment scale until 2100 in Saxony/Germany. Catena 2014, 121, 99–109. [Google Scholar] [CrossRef]
- Garcia-Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Boellstorff, D.; Benito, G. Impacts of set-aside policy on the risk of soil erosion in central Spain. Agric. Ecosyst. Environ. 2005, 107, 231–243. [Google Scholar] [CrossRef]
- Rodríguez-Lloveras, X.; Buytaert, W.; Benito, G. Land use can offset climate change induced increases in erosion in Mediterranean watersheds. Catena 2016, 143, 244–255. [Google Scholar] [CrossRef]
- Ward, P.J.; van Balen, R.; Verstraeten, G.; Renssen, H.; Vandenberghe, J. The impact of landuse and climate change on late Holocene and future suspended sediment yield of the Meuse catchment. Geomorphology 2009, 103, 389–400. [Google Scholar] [CrossRef]
- Baker, T.J.; Miller, S.N. Using the Soil and Water Assessmnent Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Fohrer, N.; Haverkamp, S.; Eckhardt, K.; Frede, H.G. Hydrologic response to land use changes on the catchment scale. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 2001, 26, 577–582. [Google Scholar] [CrossRef]
- Nie, W.; Yuan, Y.; Kepner, W.; Nash, M.S.; Jackson, M.; Erickson, C. Assessing impacts of land use and land cover changes on hydrology for the upper San Pedro watershed. J. Hydrol. 2011, 407, 105–114. [Google Scholar] [CrossRef]
- Wang, S.; Kang, S.; Zhang, L.; Li, F. Modelling hydrological response to different land use and climate change scenarios in the Zamu River basin of the northwest China. Hydrol. Process. 2008, 22, 2502–2510. [Google Scholar] [CrossRef]
- Lazzari, M.; Gioia, D.; Piccarreta, M.; Danese, M.; Lanorte, A. Sediment yield and erosion rate estimation in the mountain catchments of the Camastra artificial reservoir (Southern Italy): A comparison between different empirical methods. Catena 2015, 127, 323–339. [Google Scholar] [CrossRef]
- Van Rompaey, A.; Bazzoffi, P.; Jones, R.J.A.; Montanarella, L. Modeling sediment yields in Italian catchments. Geomorphology 2005, 65, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.B. Estimating total suspended sediment yield with probability sampling. Water Resour. Res. 1985, 21, 1381–1388. [Google Scholar] [CrossRef]
- Oeurng, C.; Sauvage, S.; Sanchez-Perez, J. Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. J. Hydrol. 2011, 401, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Tattari, S.; Rekolainen, B.S.; Posch, M.; Siimes, K.; Tuhkanen, H.-R.; Yli-Halla, M. Modelling sediment yield and phosphorus transport in Finnish Clayey soils. Trans. ASAE 2001, 44, 297–307. [Google Scholar] [CrossRef]
- Bussi, G.; Frances, F.; Horel, E.; Lopez-Tarazon, J.A.; Batalla, R.J. Modelling the impact of climate change on sediment yield in a highly erodible Mediterranean catchment. J. Soils Sediments 2014, 14, 1921–1937. [Google Scholar] [CrossRef]
- Bussi, G.; Rodriguez-Lloveras, X.; Frances, F.; Benito, G.; Sanchez-Moya, Y.; Sopena, A. Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment. Hydrol. Erath Syst. Sci. 2013, 17, 3339–3354. [Google Scholar] [CrossRef]
- Yesuf, H.M.; Assen, M.; Alamirew, T.; Melesse, A.M. Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia. Catena 2015, 127, 191–205. [Google Scholar] [CrossRef]
- Setegn, S.G.; Dargahi, B.; Srinivasan, R.; Melesse, A.M. Modelling of sediment yield from Anjeni-Gauged watershed, Ethiopia using SWAT model. J. Am. Water Resour. Assoc. 2010, 46, 514–526. [Google Scholar] [CrossRef]
- Shi, Z.H.; Ai, L.; Li, X.; Huang, X.D.; Wu, G.L.; Liao, W. Partial least squares regression for linking landcover patterns to soil erosion and sediment yield in watersheds. J. Hydrol. 2013, 498, 165–176. [Google Scholar] [CrossRef]
- Rooseboom, A. Sediment Transport in Rivers and Reservoirs. A Southern African Perspective; WRC Report No. 297/1/92; Water Research Commission: Pretoria, South Africa, 1992.
- International Water Management Institute. Baseline Report Olifants River Basin in South Africa: A contribution to the Challenge Program Project 17. Integrated Water Resource Management for Improved Rural Livelihoods: Managing Risk, Mitigating Drought and Improving Water Productivity in the Water Scarce Limpopo Basin; IWMI: Pretoria, South Africa, 2008. [Google Scholar]
- Schulze, R.E.; Maharaj, M.; Lynch, S.D.; Howe, B.J.; Melvil-Thomson, B. South African Atlas for Agrohydrology and Climatology; University of KwaZulu-Natal: Pietermaritzburg, South Africa, 1997. [Google Scholar]
- Gyamfi, C.; Ndambuki, J.M.; Salim, R.W. A historical analaysis of rainfall trend in the Olifants Basin in South Africa. Earth Sci. Res. 2016, 5, 129–142. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Digital Soil Map of The World and Derived Soil Properties; FAO: Rome, Italy, 2005. [Google Scholar]
- Department of Water Affairs And Forestry. Olifants Water Management Area: Internal Strategic Perspective; Report No. P WMA 04/000/00/0304; Department of Water Affairs and Forestry: Pretoria, South Africa, 2004.
- Department of Water Affairs And Forestry. Olifant River Water Resources Development (ORWRP) Environmental Impact Assessment (12/12/20/553); Infrastucture Development, DWAF: Pretoria, South Africa, 2005.
- Ghaffari, G.; Keesstra, S.; Ghodousi, J.; Ahmadi, H. SWAT—simulated hydrological impact of land use change in the Zanjanrood Basin, Northwest Iran. Hydrol. Process. 2010, 24, 892–903. [Google Scholar] [CrossRef]
- Arnold, J.G.; Fohrer, N. Current capabilities and research opportunities in applied watershed modeling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment—Part 1: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Williams, J.R. The EPIC model. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resouces Publication: Highlands Ranck, CO, USA, 1995; pp. 909–1000. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. SWAT User Manual (Version 2009); Texas Water Resources Institute Technical Report; Texas A and M University: Temple, TE, USA, 2011. [Google Scholar]
- Bagnold, R.A. Bedload transport in natural rivers. Water Resour. Res. 1977, 13, 303–312. [Google Scholar] [CrossRef]
- Williams, J.R. SPNM, a model for predicting sediment, phosphors and nitrogen yields from agricultural watersheds. Water Resour. Bull. 1980, 16, 843–848. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Major Soils of The World. Land and Water Digital Media Series; FAO: Rome, Italy, 2002. [Google Scholar]
- Land Type Survey Staff. Land Types of South Africa: Digital Map (1:250 000 Scale) and Soil Inventory Datasets (1972–2006); ARC-Institute for Soil, Climate and Water: Pretoria, South Africa, 1972–2006. [Google Scholar]
- Batjes, N.H. ISRIC-WISE Global Data Set of Derived Soil Properties on a 0.5 by 0.5 Degree Grid (Version 2.0); Report 2002/03; International Soil Reference and Information Centre (ISRIC): Wageningen, The Netherlands, 2002. [Google Scholar]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, W.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; USGS (United States Geological Survey): Washington, VI, USA, 1976; Volume 964, pp. 138–145.
- Food and Agriculture Organization. The Digital Soil Map of The World (Version 3.6); FAO: Rome, Italy, 2003. [Google Scholar]
- Abbaspour, K.C. SWAT-CUP-2012. SWAT Calibration and Uncertainty Program—A User Manual; Swiss Federal Institute of Aquatic Science and Technology: Dubendorf, Switzerland, 2012. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Hauck, L. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models. Part I-a discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Lin, B.; Chen, X.; Yao, H.; Chen, Y.; Liu, M.; Gao, L.; James, A. Analysis of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecol. Indic. 2015, 58, 55–63. [Google Scholar] [CrossRef]
- Tang, L.H.; Yang, D.W.; Hu, H.P.; Gao, B. Detecting the effect of land use change on streamflow, sediment and nutrient losses by distributed hydrological simulation. J. Hydrol. 2011, 409, 172–182. [Google Scholar] [CrossRef]
- Wang, G.; Xia, J.; Chen, J. Quantification of the effects of climate variations and human activities on runoff by a monthly water balance model: A case study of the Chaobai River Basin in Northern China. Water Resour. Res. 2009, 45, 1–12. [Google Scholar] [CrossRef]
- Lahmer, W.; Pfiitzner, B.; Becker, A. Assessment of landuse and climate change impacts on the mesoscale. Phys. Chem. Earth 2001, 26, 565–575. [Google Scholar] [CrossRef]
- Hu, Q.; Willson, G.D.; Chen, X.; Akyuz, A. Effects of climate and landcover change on stream discharge in the Ozark highlands USA. Environ. Model. Assess. 2004, 10, 9–19. [Google Scholar] [CrossRef]
- Rooseboom, A. Sediment transport in Southern African rivers. Water SA 1978, 4, 14–17. [Google Scholar]
- Rooseboom, A.; Verster, E.; Zietsman, H.L.; Lotriet, H.H. The Development of The New Sediment Yield Map of South Africa; WRC Report NO. 297/2/92; Water Research Commission: Pretoria, South Africa, 1992.
- Milliman, J.D.; Farnsworth, K.L. River Discharge to The Coastal Ocean: A Global Synthesis; Cambridge University Press: Cambridge, UK, 2011; p. 384. [Google Scholar]
- Bolton, P. Sediment Deposition in Major Reservoirs in the Zambezi Basin. Available online: http://hydrologie.org/redbooks/a144/iahs_144_0559.pdf (accessed on 14 October 2016).
- Food and Agriculture Organization. Global River Sediment Yields Database. Available online: http://www.fao.org/nr/water/aquastat/sediment/index.stm (accessed on 11 October 2016).
- Hooke, J.; Sandercock, P. Use of vegetation to combat desertification and land degradation: Recommendations and guidelines for spatial strategies in Mediterranean lands. Landsc. Urban Plan. 2012, 107, 389–400. [Google Scholar] [CrossRef]
- Benyon, R.G.; Theiveyanathan, S.; Doody, T.M. Impacts of tree plantations on groundwater in south-eastern Australia. Aust. J. Bot. 2006, 54, 181–192. [Google Scholar] [CrossRef]
- Chase, T.N.; Pielke, R.A., Sr.; Kittel, T.G.F.; Nemani, R.R.; Running, S.W. Simulated impacts of historical land cover changes on global climate in northern winter. Clim. Dyn. 2000, 16, 93–105. [Google Scholar] [CrossRef]
Soil Type | FAO Code | Hydrologic Group | Texture | BD (g/cm3) * | AWC (mm/mm) * |
---|---|---|---|---|---|
Cambic Arenosols | Qc42-1a | C | Sandy loam | 1.45 | 0.08 |
Chromic Luvisols | Lc65-1-2a | C | Sandy loam | 1.45 | 0.14 |
Lc3-2ab | C | Sandy Clay Loam | 1.50 | 0.18 | |
Lc66-1a | C | Sandy Loam | 1.45 | 0.14 | |
Lc64-2b | C | Sandy Clay Loam | 1.50 | 0.16 | |
Chromic Vertisols | Vc23-3a | D | Clay | 1.60 | 0.14 |
Vc1-3a | D | Clay | 1.65 | 0.13 | |
Orthic Acrisols | Ao69-1a | C | Sandy Loam | 1.50 | 0.01 |
Rhodic Ferralsols | Fr20-3bc | C | Clay | 1.20 | 0.16 |
Land Cover Class | Description |
---|---|
Urban/Built up | Residential, commercial services, industrial, transportation, communications, mixed urban or built up lands |
Agricultural lands | Crop fields and pastures |
Forest | Deciduous, evergreen and mixed forest |
Water | Lakes, reservoirs, stream |
Rangeland | Herbaceous, shrub and brush and mixed rangeland |
Process | Parameter a | Global Sensitivity | Range | Fitted Values | ||
---|---|---|---|---|---|---|
Code | t-stat b | p-Value | Rank | |||
Streamflow | CN2 | 37.72 | 0.00 | 1 | 35−98 | 65 |
ALPHA_BNK | 6.97 | 0.00 | 2 | 0−1 | 0.39 | |
ESCO | 5.57 | 0.00 | 3 | 0−1 | 0.67 | |
SOIL_AWC | 4.13 | 0.00 | 4 | 0−1 | 0.20 | |
GW_DELAY | 3.02 | 0.00 | 5 | 0−500 | 345 | |
GW_REVAP | 2.34 | 0.02 | 6 | 0.02−0.2 | 0.15 | |
Sediment | SPCON | 9.95 | 0.00 | 1 | 0−0.01 | 0.0001 |
SPEXP | 7.46 | 0.00 | 2 | 1−1.5 | 1 | |
CH_COV | 3.92 | 0.00 | 3 | −0.001−1 | 0.45 | |
USLE_P | 2.92 | 0.00 | 4 | 0−1 | 0.53 | |
USLE_C | 2.38 | 0.02 | 5 | 0.001−0.5 | 0.20 | |
CH_EROD | 2.09 | 0.04 | 6 | −0.05−0.6 | 0.37 |
Objective Function | Streamflow | Sediment | ||
---|---|---|---|---|
Calibration | Validation | Calibration | Validation | |
NSE | 0.88 | 0.67 | 0.66 | 0.64 |
R2 | 0.89 | 0.78 | 0.68 | 0.60 |
PBIAS (%) | −11.49 | −20.69 | 27.36 | 39.73 |
RSR | 0.34 | 0.57 | 0.57 | 0.59 |
Time Period | LULC Change (%) * | Sediment Yield (t/km2.a) | |||
---|---|---|---|---|---|
FRST | URHD | AGRL | RNGB | ||
2000 | 1.6 | 13.2 | 15.2 | 69.2 | 946.76 |
2007 | 2.8 | 22.4 | 21.3 | 52.4 | 1110.02 |
2013 | 2.3 | 23.7 | 35.3 | 37.6 | 1408.27 |
2000−2007 | +1.1 | +9.2 | +6.1 | −16.8 | +163.27 |
2007−2013 | −0.5 | +1.3 | +14.0 | −14.8 | +298.25 |
2000−2013 | +0.7 | +10.5 | +20.2 | −31.6 | +461.52 |
Statistics | Sediment Yield (t/km2.a) | ||
---|---|---|---|
2000 | 2007 | 2013 | |
Mean | 136.90 | 173.77 | 446.49 |
Standard Deviation | 187.16 | 226.82 | 335.75 |
Minimum | 5.88 | 14.92 | 105.35 |
Maximum | 946.76 | 1110.02 | 1408.27 |
Country | Catchment | Area × 104 (km2) | Sediment Yield (t/km2.a) | Reference |
---|---|---|---|---|
Kenya | Tana | 4.2 | 761.9 | Milliman and Farnsworth [67] |
Mozambique | Kabora Bassa | 100.0 | 134.5 | Bolton [68] |
Madagascar | Mangoky | 5.9 | 169.5 | Milliman and Farnsworth [67] |
Madagascar | Tsiribihina | 4.5 | 266.7 | Milliman and Farnsworth [67] |
Tanzania | Rufiji | 15.6 | 106.0 | FAO [69] |
South Africa | Orange | 6.8 | 352.0 | Rooseboom et al. [66] |
South Africa | Vaal | 3.7 | 125.0 | Rooseboom [65] |
South Africa | Olifants | 5.0 | 136.9−446.5 * | This study |
Predictors | Component Matrix b | Pattern Matrix c | ||
---|---|---|---|---|
F(1) | F(2) | P(1) | P(2) | |
Forest | −0.862 | −0.132 | −0.868 | −0.085 |
Urban | 0.659 | 0.402 | 0.832 | 0.448 |
Rangeland | −0.014 | −0.259 | −0.075 | −0.213 |
Agriculture | 0.839 | 0.980 | 0.854 | 0.978 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyamfi, C.; Ndambuki, J.M.; Salim, R.W. Simulation of Sediment Yield in a Semi-Arid River Basin under Changing Land Use: An Integrated Approach of Hydrologic Modelling and Principal Component Analysis. Sustainability 2016, 8, 1133. https://doi.org/10.3390/su8111133
Gyamfi C, Ndambuki JM, Salim RW. Simulation of Sediment Yield in a Semi-Arid River Basin under Changing Land Use: An Integrated Approach of Hydrologic Modelling and Principal Component Analysis. Sustainability. 2016; 8(11):1133. https://doi.org/10.3390/su8111133
Chicago/Turabian StyleGyamfi, Charles, Julius M. Ndambuki, and Ramadhan W. Salim. 2016. "Simulation of Sediment Yield in a Semi-Arid River Basin under Changing Land Use: An Integrated Approach of Hydrologic Modelling and Principal Component Analysis" Sustainability 8, no. 11: 1133. https://doi.org/10.3390/su8111133
APA StyleGyamfi, C., Ndambuki, J. M., & Salim, R. W. (2016). Simulation of Sediment Yield in a Semi-Arid River Basin under Changing Land Use: An Integrated Approach of Hydrologic Modelling and Principal Component Analysis. Sustainability, 8(11), 1133. https://doi.org/10.3390/su8111133