The Effects of Urban Policies on the Development of Urban Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SLEUTH Model
2.3. Artificialization Rate and Population Growth Rate
2.4. Materials and Data Preparation
- Value 100: areas a priori excluded from any sort of simulation, referred above as the first case in which land cannot be physically prone to urbanization; hence 100 represents the greatest resistance to artificial development.
- Value 75 includes all areas on which some strict binding and severe planning regulation obstacle urbanization, i.e., areas identified by high and very high geological risk in the land use masterplan of Valley of Agri. Riverbanks with a cycle of 30 years were also assigned to this class, as defined by several land use planning masterplans in the years. Furthermore, all areas within a buffer zone of 150 meters from conservation sites and archaeological areas were included, too.
- Value 50: only river banks with a return period of 200 years were included; Value 25 includes part of the areas labeled with medium and low geological risk in the regional land use masterplan and river banks with return period of 500 years.
3. Results and Discussion
3.1. Model Calibration
3.2. Simulation Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Seventieth Session, Agenda Items 15 and 116. 2015. Available online: http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 21 October 2015).
- Romano, B.; Zullo, F. Land urbanization in Central Italy: 50 years of evolution. J. Land Use Sci. 2012. [Google Scholar] [CrossRef]
- Romano, B.; Zullo, F. Models of urban land use in Europe: Assessment tools and criticalities. Int. J. Agric. Environ. Inf. Syst. 2013, 4, 80–97. [Google Scholar] [CrossRef]
- Martellozzo, F.; Ramankutty, N.; Hall, R.J.; Price, D.T.; Purdy, B.; Friedl, M.A. Urbanization and the loss of prime farmland: A case study in the Calgary–Edmonton corridor of Alberta. Reg. Environ. Chang. 2014, 15, 881–893. [Google Scholar] [CrossRef]
- Cerreta, M.; Poli, G. A Complex Values Map of Marginal Urban Landscapes: An Experiment in Naples (Italy). Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 2013, 4, 41–62. [Google Scholar] [CrossRef]
- Grimmond, S. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evolut. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe. “European Soil Charter”. Available online: https://wcd.coe.int/ViewDoc.jsp?id=654589 (accessed on 20 August 2015).
- Couclelis, H. Cellular worlds: A framework for modelling micro-macro dynamics. Environ. Plan. A 1985, 17, 585–596. [Google Scholar] [CrossRef]
- Von Neumann, J. Theory of Self-Producing Automata, Urban and Chicago; University of Illinois Press: Champaign, IL, USA, 1996. [Google Scholar]
- USGS. Project Gigalopolis: Urban and Land Cover Modelling. Available online: http://www.ncgia.ucsb.edu/projects/gig/ (accessed on 10 July 2015).
- Li, X.; Yeh, A.-G.O. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. Int. J. Geogr. Inf. Sci. 2000, 14, 131–152. [Google Scholar] [CrossRef]
- Amato, F.; Pontrandolfi, P.; Murgante, B. Supporting planning activities with the assessment and the prediction of urban sprawl using spatio-temporal analysis. Ecol. Inf. 2015, 30, 365–378. [Google Scholar] [CrossRef]
- Kew, B.; Lee, B.D. Measuring Sprawl across the Urban Rural Continuum Using an Amalgamated Sprawl Index. Sustainability 2013, 5, 1806–1828. [Google Scholar] [CrossRef]
- Unioncamenre Basilicata Region, 2012, L’economia della Basilicata nel 2012. Available online: http://www.sistan.it/fileadmin/redazioni/basilicata/RAPPORTO_ECONOMIA_2012.pdf (accessed on 10 July 2015). (In Italian)
- ISTAT. “Noi Italia”. 2013. Available online: http://www.istat.it/en/files/2013/03/Noi-Italia-2013.pdf (accessed on 14 July 2015). (In Italian)
- ISTAT. “Le Problematiche Connesse al Consumo del Suolo”. 2012. Available online: http://www.istat.it/it/archivio/51331 (accessed on 14 July 2015). (In Italian)
- Chaudhuri, G.; Clarke, K.C. The SLEUTH Land Use Change Model: A Review. Int. J. Environ. Resour. Res. 2013, 1, 88–105. [Google Scholar]
- Clarke, K.C.; Gaydos, L.J. Loose-coupling a cellular automaton model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore. Int. J. Geogr. Inf. Sci. 1998, 12, 699–714. [Google Scholar] [CrossRef] [PubMed]
- Jantz, C.A.; Goetz, S.J.; Shelley, M.K. Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on urban land use in the Baltimore—Washington metropolitan area. Environ. Plan. B 2003, 31, 251–271. [Google Scholar] [CrossRef]
- Caglioni, M.; Pelizzoni, M.; Rabino, G.A. Urban Sprawl: A case study for project gigalopolis using SLEUTH model, Lecture Notes in Computer Science. In Proceedings of the 7th International Conference on Cellular Automata for Research and Industry, Perpignan, France, 20–23 September 2006; Volume 4173.
- Martellozzo, F. Forecasting high correlation transition of agricultural landscapes into urban areas. Diachronic case study in north-eastern Italy. IJAEIS Anal. Model. Vis. Spat. Environ. Data 2012, 3, 22–34. [Google Scholar]
- Cogan, C.B.; Davis, F.W.; Clarke, K.C. Application of Urban Growth Models and Wildlife Habitat Models to Assess Biodiversity Losses; United States Geogolical Survey: Reston, VA, USA, 2001.
- Amato, F.; Pontrandolfi, P.; Murgante, B. Using Spatiotemporal Analysis in Urban Sprawl Assessment and Prediction. Comput. Sci. 2014, 8580, 758–773. [Google Scholar]
- Amato, F.; Martellozzo, F.; Murgante, B.; Nolè, G. A Quantitative Prediction of Soil Consumption in Southern Italy. Chapter: Computational Science and Its Applications—ICCSA. Comput. Sci. 2015, 9157, 798–812. [Google Scholar]
- Clarke, K.C.; Hoppens, S.; Gaydos, L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ. Plan. B Plan. Des. 1997, 24, 247–261. [Google Scholar] [CrossRef]
- Project Gigalopolis; SLEUTH. Available online: http://www.ncgia.ucsb.edu/projects/gig/Dnload/download.htm (assessed on 1 January 2015).
- Dietzel, C.; Clarke, K.C. Toward Optimal Calibration of the SLEUTH Land Use Change Model. Trans. GIS 2007, 11, 29–45. [Google Scholar] [CrossRef]
- Martellozzo, F.; Clarke, K.C. Urban Sprawl and the Quantification of Spatial Dispersion. In Geographic Information Analysis for Sustainable Development and Economic Planning; Borruso, G., Bertazzon, S., Favretto, A., Murgante, B., Torre, C.M., Eds.; IGI Global: Hershey, PA, USA, 2013; pp. 129–142. [Google Scholar]
- Silva, E.A.; Clarke, K.C. Calibration of the SLEUTH Urban Growth Model for Lisbon and Porto, Portugal. Comput. Environ. Urban Syst. 2002, 26, 525–552. [Google Scholar] [CrossRef]
- Project Gigalopolis. Available online: http://www.ncgia.ucsb.edu/projects/gig/About/about.html (assessed on 1 January 2015).
- KantaKumar, L.; Sawant, N.; Kumar, S. Forecasting urban growth based on GIS, RS and SLEUTH model in Pune metropolitan area. Int. J. Geomat. Geosci. 2011, 2, 568–579. [Google Scholar]
- Bihamta, N.; Soffianian, A.; Fakheran, S.; Gholamalifard, M. Using the SLEUTH Urban Growth Model to Simulate Future Urban Expansion of the Isfahan Metropolitan Area, Iran. J. Indian Soc. Remote Sens. 2014. [Google Scholar] [CrossRef]
- Dietzel, C.; Clarke, K.C. Spatial Differences in Multi-Resolution Urban Automata Modeling. Trans. GIS 2004, 8, 497–492. [Google Scholar] [CrossRef]
- Martellozzo, F.; Clarke, K.C. Measuring urban sprawl, coalescence, and dispersal: A case study of Pordenone, Italy. Environ. Plan. B 2011, 38, 1085–1104. [Google Scholar] [CrossRef]
- Balena, P.; Sannicandro, V.; Torre, C.M. A Multicriteria Approach for the Assessment of Soil Consumption. Comput. Sci. 2014, 8581, 446–458. [Google Scholar]
- Italian National Cartographic Geoportal. Available online: http://www.pcn.minambiente.it (assessed on 1 January 2015).
- Basilicata Region, Regional Spatial Data Infrastructure. Available online: http://rsdi.regione.basilicata.it (assessed on 1 January 2015).
- Development and Economic Cohesion Department, OpenCoesione data. Available online: http://www.opencoesione.gov.it (assessed on 1 January 2015).
- Silverman, B.W. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability; Chapman and Hall: London, UK, 1986. [Google Scholar]
- Bailey, T.C.; Gatrell, A.C. Interactive Spatial Data Analysis. In Longman Higher Education, Harlow; Pearson Education: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
- Borruso, G. Network Density Estimation: Analysis of Point Patterns Over a Network. In ICCSA 2005. LNCS; Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K., Eds.; Springer: Heidelberg, Germany, 2005; Volume 3482, pp. 126–132. [Google Scholar]
- Diggle, P.J. A Kernel Method for Smoothing Point Process Data. Applied Statistics. J. R. Stat. Soc. Ser. C 1985, 153, 349–362. [Google Scholar] [CrossRef]
- Balena, P.; Sannicandro, V.; Torre, C.M. Spatial Analysis of Soil Consumption as Support to Transfer Development Rights Mechanisms. Comput. Sci. 2013, 7974, 587–599. [Google Scholar]
- Amato, F.; Pontrandolfi, P.; Murgante, B. Modelli di analisi e Previsione Spazio-Temporali per la Valutazione del consumo di suolo ed Implicazioni nelle Politiche Urbanistiche”, Urbanistica Informazioni, Anno XXXXI, Settembre–Ottobre 2014, Sessione 7. INU Edizioni 2014, 257, 6–10. (In Italian) [Google Scholar]
- Nolè, G.; Murgante, B.; Calamita, G.; Lanorte, A.; Lasaponara, R. Evaluation of Urban Sprawl from space using open source technologies. Ecol. Inf. 2014. [Google Scholar] [CrossRef]
- ENI. ENI in Basilicata, Local Report; ENI: Rome, Italy, 2012. [Google Scholar]
- Danese, M.; Lazzari, M.; Murgante, B. Kernel Denisty Estimation for a Geostatistical Approach in Seismic Risk Analysis: The Case Study of Potenza Hilltop Town (Southern Italy). Comput. Sci. 2008, 5072, 415–429. [Google Scholar]
- Karlen, D.L.; Rice, C.W. Soil Degradation: will Humankind Ever Learn? Sustainability 2015, 7, 12490–12501. [Google Scholar] [CrossRef]
- Amato, F.; Martellozzo, F.; Nolè, G.; Murgante, B. Preserving cultural heritage by supporting landscape planning with quantitative predictions of soil consumption. J. Cult. Herit. 2016, in press. [Google Scholar]
Date | Source |
---|---|
1956 | WMS GIS services from the National Geoportal [40] |
1988 | WMS GIS services from the National Geoportal [40] |
1995 | Regional Vector Cartography WMS GIS service from Regional Geoportal [41] |
2012 | WMS GIS services from the National Geoportal and (partially) 2012 ortophoto [40] |
Coarse | Fine | Final | |
---|---|---|---|
Diffusion | 20 | 17 | 17 |
Breed | 1 | 4 | 6 |
Spread | 1 | 15 | 13 |
Slope | 100 | 90 | 92 |
Road Gravity | 90 | 65 | 54 |
Compare | 0.946 | 0.987 | 0.989 |
r2 population | 0.985 | 0.992 | 0.996 |
Edge r2 | 0.976 | 0.987 | 0.992 |
R2 cluster | 0.986 | 0.990 | 0.987 |
Lee Sale | 0.484 | 0.473 | 0.508 |
Average slope r2 | 0.989 | 0.992 | 0.995 |
% Urban | 0.985 | 0.992 | 0.996 |
X_r2 | 0.918 | 0.915 | 0.947 |
Y_r2 | 0.937 | 0.942 | 0.975 |
Radius | 0.988 | 0.994 | 0.998 |
Artificial Land 2012 (ha) | Artificial Land 2050 (ha) | |
---|---|---|
Marsico Nuovo | 301 | 341 |
Marsicovetere | 224 | 240 |
Viggiano | 287 | 315 |
Population Growth Rate (1991–2012) | Artificial Land 2012 (ha) | Artificial Land 2020 (ha) | Artificial Land 2030 (ha) | Artificial Land 2040 (ha) | Artificial Land 2050 (ha) | |
---|---|---|---|---|---|---|
Abriola | −0.131 | 75 | 80 | 81 | 83 | 85 |
Armento | −0.151 | 38 | 41 | 43 | 44 | 47 |
Calvello | −0.117 | 93 | 100 | 102 | 103 | 105 |
Corleto Perticara | −0.136 | 112 | 121 | 123 | 126 | 129 |
Grumento Nova | −0.073 | 186 | 200 | 207 | 214 | 225 |
Guardia Perticara | −0.234 | 39 | 42 | 44 | 48 | 53 |
Laurenzana | −0.136 | 88 | 93 | 94 | 95 | 96 |
Marsico Nuovo | −0.151 | 301 | 315 | 321 | 330 | 341 |
Marsicovetere | −0.135 | 224 | 230 | 232 | 235 | 240 |
Moliterno | −0.089 | 161 | 167 | 168 | 168 | 169 |
Montemurro | −0.156 | 54 | 58 | 59 | 60 | 61 |
San Chirico Raparo | −0.142 | 36 | 36.5 | 37 | 37.5 | 38 |
San Martino d’Agri | −0.109 | 39 | 40 | 41 | 41,5 | 42 |
Sarconi | −0.148 | 86 | 89 | 91 | 93 | 94 |
Spinoso | 0.008 | 89 | 93 | 93 | 93 | 93 |
Tramutola | −0.125 | 143 | 149 | 152 | 156 | 159 |
Viggiano | −0.029 | 287 | 299 | 304 | 309 | 315 |
Paterno | −0.026 | 186 | 196 | 204 | 214 | 228 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amato, F.; Maimone, B.A.; Martellozzo, F.; Nolè, G.; Murgante, B. The Effects of Urban Policies on the Development of Urban Areas. Sustainability 2016, 8, 297. https://doi.org/10.3390/su8040297
Amato F, Maimone BA, Martellozzo F, Nolè G, Murgante B. The Effects of Urban Policies on the Development of Urban Areas. Sustainability. 2016; 8(4):297. https://doi.org/10.3390/su8040297
Chicago/Turabian StyleAmato, Federico, Biagio Antonio Maimone, Federico Martellozzo, Gabriele Nolè, and Beniamino Murgante. 2016. "The Effects of Urban Policies on the Development of Urban Areas" Sustainability 8, no. 4: 297. https://doi.org/10.3390/su8040297
APA StyleAmato, F., Maimone, B. A., Martellozzo, F., Nolè, G., & Murgante, B. (2016). The Effects of Urban Policies on the Development of Urban Areas. Sustainability, 8(4), 297. https://doi.org/10.3390/su8040297