Combining the Conservation of Biodiversity with the Provision of Ecosystem Services in Urban Green Infrastructure Planning: Critical Features Arising from a Case Study in the Metropolitan Area of Rome
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Ranking of the Performance of Urban Forests and Trees in ES Provision
3.2. Critical Features for the Conservation of Urban Trees and Forests
3.2.1. Biogeographic Representativity and Ecological Coherence
3.2.2. Structural and Functional Connectivity
3.3. Suggested Actions for Integrating Biodiversity Values into Urban GI in the City of Rome
- (1)
- Proactive conservation [82] of the native and spontaneous trees and forest remnants, focusing on those types that are most representative of the local potential natural vegetation. Although this action is markedly oriented toward biodiversity conservation, it always provides an expectedly positive balance between the delivery of maintenance, regulatory and cultural ES, and guarantees the long-term survival and low maintenance costs of the related GI components.
- (2)
- Facilitation of the spontaneous natural dynamics, also defined as passive restoration [78], for the recovery of natural forest types in the various environmental units of the city. This GI intervention should generally be faster and less costly than active restoration measures and is expected to yield the same, well-balanced, multiple benefits as proactive conservation, without the risks involved in the planting of trees that do not fit in with the environmental conditions of the site. Moreover, if the size and the landscape context of the site permit it, a wider coverage area of ecologically coherent species and communities may enhance the GI-based delivery of regulating ES (as in the case of particulate matter removal) to a greater extent than a more limited number of trees that may perform better but that are ecologically incoherent (as in the case of evergreen oaks outside strictly Mediterranean-like environments).
- (3)
- Control of the spread of non-native trees and replacement of exotic forests at specific sites, such as areas in which biogeographically representative and ecologically coherent woody plant diversity is poor, areas with a progressive vegetation dynamic that is prevalently based on non-native species, and protected areas. In such sites of the study area, the effort to recover native trees and forests should prevail over any other expected value of non-native species and communities related to the functional behavior and cost-effective introduction of the latter [47]. Therefore, this indication places some constraints on the open adoption of the best performing species and communities that are listed in Section 3.1 for the improvement of ES provision to desired levels.
- (4)
- Active restoration of seed sources and enhancement of functional connectivity for biogeographically representative and ecologically coherent trees with critical gaps in their present distribution and short-distance dispersal. This action is particularly important in sites with poor native species diversity and a dense artificial matrix. In such markedly artificial environments, in which the focus is placed on GI elements that perform most effectively in elements such as noise abatement and/or air pollution removal, regardless of the type of ES providers, at least part of the areas being restored should be dedicated to the enhancement of functional connectivity between these woody species.
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- EC (European Commission). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions ‘Green Infrastructure (GI)—Enhancing Europe’s Natural Capital’ (COM(2013) 249 Final of 6 May 2013). Available online: http://eur-lex.europa.eu/resource.html?uri=cellar:d41348f2-01d5-4abe-b817-4c73e6f1b2df.0014.03/DOC_1&format=PDF (accessed on 20 July 2016).
- EEA (European Environment Agency). Spatial Analysis of Green Infrastructure in Europe; Technical Report No. 2/2014; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- EEA (European Environment Agency). Green Infrastructure and Territorial Cohesion. The Concept of Green Infrastructure and Its Integration into Policies Using Monitoring Systems; EEA Technical Report No. 18/2011; Publications Office of the European Union: Luxembourg, 2011. [Google Scholar]
- Maes, J.; Zulian, G.; Thijssen, M.; Castell, C.; Baró, F.; Ferreira, A.M.; Melo, J.; Garrett, C.P.; David, N.; Alzetta, C.; et al. Mapping and Assessment of Ecosystems and Their Services. Urban Ecosystems; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Lafortezza, R.; Davies, C.; Sanesi, G.; Konijnendijk, C.C. Green Infrastructure as a tool to support spatial planning in European urban regions. iForest 2013, 6, 102–108. [Google Scholar] [CrossRef]
- Hansen, R.; Frantzeskaki, N.; McPhearson, T.; Rall, E.; Kabisch, N.; Kaczorowska, A.; Kain, J.H.; Artmann, M.; Pauleit, S. The uptake of the ecosystem services concept in planning discourses of European and American cities. Ecosyst. Serv. 2015, 12, 228–246. [Google Scholar] [CrossRef]
- Andreucci, M.B. Progressing Green Infrastructure in Europe. WIT Trans. Ecol. Environ. 2013. [Google Scholar] [CrossRef]
- Garmendia, E.; Apostolopoulou, E.; Adams, W.M.; Bormpoudakis, D. Biodiversity and Green Infrastructure in Europe: Boundary object or ecological trap? Land Use Policy 2016, 56, 315–319. [Google Scholar] [CrossRef]
- Salomaa, A.; Paloniemi, R.; Kotiaho, J.S.; Kettunen, M.; Apostolopoulou, E.; Cent, J. Can green infrastructure help to conserve biodiversity? Environ. Plan. C Gov. Policy 2016, in press. [Google Scholar] [CrossRef]
- Geneletti, D.; Zardo, L. Ecosystem-based adaptation in cities: An analysis of European urban climate adaptation plans. Land Use Policy 2016, 50, 38–47. [Google Scholar] [CrossRef]
- Langemeyer, J.; Gómez-Baggethun, E.; Haase, D.; Scheuer, S.; Elmqvist, T. Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environ. Sci. Policy 2016, 62, 45–56. [Google Scholar] [CrossRef]
- Pirnat, J.; Hladnik, D. Connectivity as a tool in the prioritization and protection of sub-urban forest patches in landscape conservation planning. Landsc. Urban Plan. 2016, 153, 129–139. [Google Scholar] [CrossRef]
- Hostetler, M.; Allen, W.; Meurk, C. Conserving urban biodiversity? Creating green infrastructure is only the first step. Landsc. Urban Plan. 2011, 100, 369–371. [Google Scholar] [CrossRef]
- Gagné, S.A.; Eigenbrod, F.; Bert, D.G.; Cunnington, G.M.; Olson, L.T.; Smith, A.C.; Fahrig, L. A simple landscape design framework for biodiversity conservation. Landsc. Urban Plan. 2015, 136, 13–27. [Google Scholar] [CrossRef]
- Connop, S.; Vandergert, P.; Eisenberg, B.; Collier, M.J.; Nash, C.; Clough, J.; Newport, D. Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure. Environ. Sci. Policy 2016, in press. [Google Scholar]
- Kremer, P.; Hamstead, Z.; Haase, D.; McPhearson, T.; Frantzeskaki, N.; Andersson, E.; Kabisch, N.; Larondelle, N.; Rall, E.; Voigt, A.; et al. Key insights for the future of urban ecosystem services research. Ecol. Soc. 2016. [Google Scholar] [CrossRef]
- EC (European Commission). Communication from the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regions. Our Life Insurance, Our Natural Capital: An EU Biodiversity Strategy to 2020 (COM(2011)244 Final). Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52011DC0244 (accessed on 20 July 2016).
- Capotorti, G.; Alós Ortí, M.M.; Anzellotti, I.; Azzella, M.M.; Copiz, R.; Mollo, B.; Zavattero, L. The MAES process in Italy: Contribution of vegetation science to implementation of European Biodiversity Strategy to 2020. Plant Biosyst. 2015, 149, 949–953. [Google Scholar] [CrossRef]
- Dobbs, C.; Escobedo, F.J.; Zipperer, W.C. A framework for developing urban forest ecosystem services and goods indicators. Landsc. Urban Plan. 2011, 99, 196–206. [Google Scholar] [CrossRef]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef]
- Baró, F.; Chaparro, L.; Gómez-Baggethun, E.; Langemeyer, J.; Nowak, D.J.; Terradas, J. Contribution of ecosystem services to air quality and climate change mitigation policies: The case of urban forests in Barcelona, Spain. Ambio 2014, 43, 466–479. [Google Scholar] [CrossRef] [PubMed]
- EEA (European Environment Agency) CICES Website. Towards a Common Classification of Ecosystem Services. Available online: http://cices.eu/ (accessed on 20 July 2016).
- Celesti-Grapow, L.; Capotorti, G.; Del Vico, E.; Lattanzi, E.; Tilia, A.; Blasi, C. The vascular flora of Rome. Plant Biosyst. 2013, 147, 1059–1087. [Google Scholar] [CrossRef]
- Blasi, C.; Capotorti, G. Carta Delle Serie di Vegetazione del Territorio del Comune di Roma (1:50,000). Available online: http://www.urbanistica.comune.roma.it (accessed on 20 July 2016).
- Conti, F.; Abbate, G.; Alessandrini, A.; Blasi, C. (Eds.) An Annotated Checklist of the Italian Vascular Flora; Palombi Editori: Rome, Italy, 2005.
- Celesti-Grapow, L.; Alessandrini, A.; Arrigoni, P.V.; Banfi, E.; Bovio, M.; Brundu, G.; Cagiotti, M.; Camarda, I.; Bernardo, L.; Conti, F.; et al. Inventory of the non-native flora of Italy. Plant Biosyst. 2009, 143, 386–430. [Google Scholar] [CrossRef]
- Manes, F.; Blasi, C.; Salvatori, E.; Capotorti, G.; Galante, G.; Feoli, E.; Incerti, G. Natural vegetation and ecosystem services related to air quality improvement: Tropospheric ozone removal by evergreen and deciduous forests in Latium (Italy). Ann. Bot. 2012, 2, 79–86. [Google Scholar]
- Manes, F.; Incerti, G.; Salvatori, E.; Vitale, M.; Ricotta, C.; Costanza, R. Urban ecosystem services: Tree diversity and stability of tropospheric ozone removal. Ecol. Appl. 2012, 22, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Manes, F.; Marando, F.; Capotorti, G.; Blasi, C.; Salvatori, E.; Fusaro, L.; Ciancarella, L.; Mircea, M.; Marchetti, M.; Chirici, G.; et al. Regulating Ecosystem Services of forests in ten Italian Metropolitan Cities: Air quality improvement by PM10 and O3 removal. Ecol. Indic. 2016, 67, 425–440. [Google Scholar] [CrossRef]
- Chirici, G.; Barbati, A.; Maselli, F. Modelling of Italian forest net primary productivity by the integration of remotely sensed and GIS data. For. Ecol. Manag. 2007, 246, 285–295. [Google Scholar] [CrossRef]
- Marchetti, M.; Sallustio, L.; Ottaviano, M.; Barbati, A.; Corona, P.; Tognetti, R.; Zavattero, L.; Capotorti, G. Carbon sequestration by forests in the National Parks of Italy. Plant Biosyst. 2012, 146, 1001–1011. [Google Scholar] [CrossRef] [Green Version]
- Gratani, L.; Varone, L. Carbon sequestration by Quercus ilex L. and Quercus pubescens Willd. and their contribution to decreasing air temperature in Rome. Urban Ecosyst. 2006, 9, 27–37. [Google Scholar] [CrossRef]
- Gratani, L.; Varone, L. Plant crown traits and carbon sequestration capability by Platanus hybrida Brot. in Rome. Landsc. Urban Plan. 2007, 81, 282–286. [Google Scholar] [CrossRef]
- Leuzinger, S.; Vogt, R.; Körner, C. Tree surface temperature in an urban environment. Agric. For. Meteorol. 2010, 150, 56–62. [Google Scholar] [CrossRef]
- Georgi, N.J.; Zafiriadis, K. The impact of park trees on microclimate in urban areas. Urban Ecosyst. 2006, 9, 195–209. [Google Scholar] [CrossRef]
- Napoli, M.; Massetti, L.; Brandani, G.; Petralli, M.; Orlandini, S. Modeling tree shade effect on urban ground surface temperature. J. Environ. Qual. 2016, 45, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.I.; van Haverbeke, D.F. Trees and Shrubs for Noise Abatement; Experimental Station Bulletin; University of Nebraska, College of Agricultural: Lincoln, NE, USA, 1971; Volume 246. [Google Scholar]
- Nowak, D.J.; Dwyer, J.F. Understanding the benefits and costs of urban forest ecosystems. In Urban and Community Forestry in the Northeast; Springer: Dordrecht, The Netherlands, 2007; pp. 25–46. [Google Scholar]
- Gratani, L.; Varone, L. Carbon sequestration and noise attenuation provided by hedges in Rome: The contribution of hedge traits in decreasing pollution levels. Atmos. Pollut. Res. 2013, 4, 315–332. [Google Scholar] [CrossRef]
- Sanders, R.A. Urban vegetation impacts on the hydrology of Dayton, Ohio. Urban Ecol. 1986, 9, 361–376. [Google Scholar] [CrossRef]
- Bonaiuto, M.; Fornara, F.; Bonnes, M. Indexes of perceived residential environment quality and neighbourhood attachment in urban environments: A confirmation study on the city of Rome. Landsc. Urban Plan. 2003, 65, 41–52. [Google Scholar] [CrossRef]
- Bonnes, M.; Carrus, G.; Bonaiuto, M.; Fornara, F.; Passafaro, P. Inhabitants’ environmental perceptions in the city of Rome within the framework of Urban Biosphere Reserves of the UNESCO programme on Man and Biosphere. Ann. N. Y. Acad. Sci. 2004, 1023, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Blasi, C.; Capotorti, G.; Marchese, M.; Marta, M.; Bologna, M.A.; Bombi, P.; Bonaiuto, M.; Bonnes, M.; Carrus, G.; Cifelli, F.; et al. Interdisciplinary research for the proposal of the Urban Biosphere Reserve of Rome Municipality. Plant Biosyst. 2008, 142, 305–312. [Google Scholar] [CrossRef]
- Capotorti, G.; Del Vico, E.; Lattanzi, E.; Tilia, A.; Celesti-Grapow, L. Exploring biodiversity in a metropolitan area in the Mediterranean region: The urban and suburban flora of Rome (Italy). Plant Biosyst. 2013, 147, 174–185. [Google Scholar] [CrossRef]
- Celesti-Grapow, L. Atlante della Flora di Roma; Comune di Roma: Rome, Italy, 1995. [Google Scholar]
- Blasi, C.; Lattanzi, E.; Tilia, A.; Celesti-Grapow, L.; Fortini, P.; Capotorti, G. Carta Delle Emergenze Floristico-Vegetazionali del Territorio del Comune di Roma (1:20,000). Available online: http://www.urbanistica.comune.roma.it (accessed on 20 July 2016).
- Dearborn, D.C.; Kark, S. Motivations for conserving urban biodiversity. Conserv. Biol. 2009, 24, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 2011, 159, 1974–1983. [Google Scholar] [CrossRef] [PubMed]
- Celesti-Grapow, L.; Di Marzio, P.; Blasi, C. The importance of alien and native species in the urban flora of Rome (Italy). In Plant Invasions: Species Ecology and Ecosystem Management; Brundu, G., Brock, J., Camarda, I., Child, L., Wade, M., Eds.; Blackhuys Publ.: Leiden, The Netherlands, 2001; pp. 209–220. [Google Scholar]
- Frondoni, R.; Mollo, B.; Capotorti, G. A landscape analysis of land cover change in the Municipality of Rome (Italy): Spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landsc. Urban Plan. 2011, 100, 117–128. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Trentanovi, G.; Lippe, M.; Sitzia, T.; Ziechmann, U.; Kowarik, I.; Cierjacks, A. Biotic homogenization at the community scale: Disentangling the roles of urbanization and plant invasion. Divers. Distrib. 2013, 19, 738–748. [Google Scholar] [CrossRef]
- Aronson, M.F.; Handel, S.N.; La Puma, I.P.; Clemants, S.E. Urbanization promotes non-native woody species and diverse plant assemblages in the New York metropolitan region. Urban Ecosyst. 2015, 18, 31–45. [Google Scholar] [CrossRef]
- Ricotta, C.; Di Nepi, M.; Guglietta, D.; Celesti-Grapow, L. Exploring taxonomic filtering in urban environments. J. Veg. Sci. 2008, 19, 229–238. [Google Scholar] [CrossRef]
- Pärtel, M.; Bennett, J.A.; Zobel, M. Macroecology of biodiversity: Disentangling local and regional effects. New Phytol. 2016, 211, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Blasi, C.; Capotorti, G.; Frondoni, R. Defining and mapping typological models at the landscape scale. Plant Biosyst. 2005, 139, 155–163. [Google Scholar] [CrossRef]
- Capotorti, G.; Guida, D.; Siervo, V.; Smiraglia, D.; Blasi, C. Ecological classification of land and conservation of biodiversity at the national level: The case of Italy. Biol. Conserv. 2012, 147, 174–183. [Google Scholar] [CrossRef]
- Blasi, C.; Capotorti, G.; Marta, M.; Marchese, M. An integrated approach to better define the concept and functions of Urban Biosphere Reserves. Plant Biosyst. 2008, 142, 324–330. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Miyawaki, A. Restoration of living environment based on vegetation ecology: Theory and practice. Ecol. Res. 2004, 19, 83–90. [Google Scholar] [CrossRef]
- Schirone, B.; Salis, A.; Vessella, F. Effectiveness of the Miyawaki method in Mediterranean forest restoration programs. Landsc. Ecol. Eng. 2011, 7, 81–92. [Google Scholar] [CrossRef]
- Kenney, W.A.; van Wassenaer, P.J.E.; Satel, A.L. Criteria and Indicators for Strategic Urban Forest Planning and Management. Arboric. Urban For. 2011, 37, 108–117. [Google Scholar]
- Blasi, C.; Capotorti, G.; Copiz, R.; Guida, D.; Mollo, B.; Smiraglia, D.; Zavattero, L. Classification and mapping of the ecoregions of Italy. Plant Biosyst. 2014, 148, 1255–1345. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Penas, A.; Díaz, T.E. Bioclimatic and Biogeographic Maps of Europe. Available online: http://www.globalbioclimatics.org/form/maps.htm (accessed on 20 July 2016).
- Anzalone, B.; Iberite, M.; Lattanzi, E. La Flora vascolare del Lazio. Inform. Bot. Ital. 2010, 42, 187–317. [Google Scholar]
- Blasi, C.; Carranza, M.L.; Filesi, L.; Tilia, A.; Acosta, A. Relation between climate and vegetation along a Mediterranean-Temperate boundary in central Italy. Glob. Ecol. Biogeogr. 1999, 8, 17–27. [Google Scholar] [CrossRef]
- Viscosi, V.; Fortini, P.; Slice, D.E.; Loy, A.; Blasi, C. Geometric morphometric analyses of leaf variation in four oak species of the subgenus Quercus (Fagaceae). Plant Biosyst. 2009, 143, 575–587. [Google Scholar] [CrossRef]
- The IUCN Red List of Threatened Species 2016-1. Available online: www.iucnredlist.org (accessed on 20 July 2016).
- Rosario, L.C. Acer Negundo. Fire Effects Information System. 1988. Available online: http://www.fs.fed.us/database/feis/plants/tree/aceneg/all.html (accessed on 20 July 2016).
- Maldonado, N.G.; López, M.J.; Caudullo, G. Tamarix-tamarisks in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016. [Google Scholar]
- De Rigo, D.; Enescu, C.M.; Durrant, T.H.; Caudullo, G. Quercus cerris in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in cities needs space: A meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Maes, J.; Barbosa, A.; Baranzelli, C.; Zulian, G.; e Silva, F.B.; Vandecasteele, I.; Hiederer, R.; Liquete, C.; Paracchini, M.L.; Mubareka, S.; et al. More green infrastructure is required to maintain ecosystem services under current trends in land-use change in Europe. Landsc. Ecol. 2015, 30, 517–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Calabrese, J.M.; Fagan, W.F. A comparison-shopper’s guide to connectivity metrics. Front. Ecol. Environ. 2004, 2, 529–536. [Google Scholar] [CrossRef]
- Van der Walt, L.; Cilliers, S.S.; Du Toit, M.J.; Kellner, K. Conservation of fragmented grasslands as part of the urban green infrastructure: How important are species diversity, functional diversity and landscape functionality? Urban Ecosyst. 2015, 18, 87–113. [Google Scholar] [CrossRef]
- Benayas, J.M.R.; Bullock, J.M. Vegetation restoration and other actions to enhance wildlife in European agricultural landscapes. In Rewilding European Landscapes; Springer International Publishing: Cham (ZG), Switzerland, 2015; pp. 127–142. [Google Scholar]
- Puerta-Piñero, C.; Pino, J.; Gómez, J.M. Direct and indirect landscape effects on Quercus ilex regeneration in heterogeneous environments. Oecologia 2012, 170, 1009–1020. [Google Scholar] [CrossRef] [PubMed]
- Murphy, H.T.; Lovett-Doust, J. Context and connectivity in plant metapopulations and landscape mosaics: Does the matrix matter? Oikos 2004, 105, 3–14. [Google Scholar] [CrossRef]
- Brunelli, M.; Sarrocco, S.; Corbi, F.; Sorace, A.; Boano, A.; De Felici, S.; Guerrieri, G.; Meschini, A.; Roma, S. Nuovo Atlante Degli Uccelli Nidificanti nel Lazio; Edizioni ARP (Agenzia Regionale Parchi): Rome, Italy, 2011. [Google Scholar]
- Brooks, T.M.; Mittermeier, R.A.; da Fonseca, G.A.B.; Gerlach, J.; Hoffmann, M.; Lamoreux, J.F.; Mittermeier, C.G.; Pilgrim, J.D.; Rodrigues, A.S.L. Global biodiversity conservation priorities. Science 2006, 313, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Richardson, L.; Loomis, J.; Kroeger, T.; Casey, F. The role of benefit transfer in ecosystem service valuation. Ecol. Econ. 2015, 115, 51–58. [Google Scholar] [CrossRef]
- Livesley, S.J.; McPherson, G.M.; Calfapietra, C. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Pickett, S.T.; Cadenasso, M.L.; Grove, J.M.; Nilon, C.H.; Pouyat, R.V.; Zipperer, W.C.; Costanza, R. Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 2001, 32, 127–157. [Google Scholar] [CrossRef]
- Mirabile, M.; Bianco, P.M.; Silli, V.; Brini, S.; Chiesura, A.; Vitullo, M.; Ciccarese, L.; De Lauretis, R.; Gaudioso, D. Guidelines of Sustainable Urban Forestry for the Municipality of Rome; ISPRA: Roma, Italy, 2015. [Google Scholar]
- Tiwary, A.; Williams, I.D.; Heidrich, O.; Namdeo, A.; Bandaru, V.; Calfapietra, C. Development of multi-functional streetscape green infrastructure using a performance index approach. Environ. Pollut. 2016, 208, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Kroeger, T.; Wager, J.E. Urban forest and pollution mitigation: Analyzing ecosystem services and disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- Lyytimäki, J.; Sipilä, M. Hopping on one leg—The challenge of ecosystem disservices for urban green management. Urban For. Urban Green. 2009, 8, 309–315. [Google Scholar] [CrossRef]
- Celesti-Grapow, L.; Blasi, C. The role of alien and native weeds in the deterioration of archaeological remains in Italy. Weed Technol. 2004, 18, 1508–1513. [Google Scholar]
- Caneva, G.; Pacini, A.; Celesti-Grapow, L.; Ceschin, S. The Colosseum’s use and state of abandonment analysed through its flora. Int. Biodeterior. Biodegrad. 2003, 51, 211–219. [Google Scholar] [CrossRef]
- Mitchell, M.G.; Bennett, E.M.; Gonzalez, A. Linking landscape connectivity and ecosystem service provision: Current knowledge and research gaps. Ecosystems 2013, 16, 894–908. [Google Scholar] [CrossRef]
- Lechner, A.M.; Doerr, V.; Harris, R.M.; Doerr, E.; Lefroy, E.C. A framework for incorporating fine-scale dispersal behaviour into biodiversity conservation planning. Landsc. Urban Plan. 2015, 141, 11–23. [Google Scholar] [CrossRef]
- Capotorti, G.; Mollo, B.; Zavattero, L.; Anzellotti, I.; Celesti-Grapow, L. Setting Priorities for Urban Forest Planning. A Comprehensive Response to Ecological and Social Needs for the Metropolitan Area of Rome (Italy). Sustainability 2015, 7, 3958–3976. [Google Scholar] [CrossRef]
- Sjöman, H.; Morgenroth, J.; Sjöman, J.D.; Sæbø, A.; Kowarik, I. Diversification of the urban forest—Can we afford to exclude exotic tree species? Urban For. Urban Green. 2016, 18, 237–241. [Google Scholar] [CrossRef]
- Dickie, I.A.; Bennett, B.M.; Burrows, L.E.; Nunez, M.A.; Peltzer, D.A.; Porté, A.; Richardson, D.M.; Rejmánek, M.; Rundel, P.W.; van Wilgen, B.W. Conflicting values: Ecosystem services and invasive tree management. Biol. Invasions 2014, 16, 705–719. [Google Scholar] [CrossRef]
- Barbati, A.; Corona, P.; Salvati, L.; Gasparella, L. Natural forest expansion into suburban countryside: Gained ground for a green infrastructure? Urban For. Urban Green. 2013, 12, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Schewenius, M.; McPhearson, T.; Elmqvist, T. Opportunities for increasing resilience and sustainability of urban social–ecological systems: Insights from the URBES and the cities and biodiversity outlook projects. Ambio 2014, 43, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Childers, D.L.; Cadenasso, M.L.; Grove, J.M.; Marshall, V.; McGrath, B.; Pickett, S.T. An ecology for cities: A transformational nexus of design and ecology to advance climate change resilience and urban sustainability. Sustainability 2015, 7, 3774–3791. [Google Scholar] [CrossRef]
- Benedict, M.A.; McMahon, E.T. Green Infrastructure; Island Press: Washington, DC, USA, 2006; pp. 1–299. [Google Scholar]
- Williams, N.S.; Lundholm, J.; MacIvor, J.S. FORUM: Do green roofs help urban biodiversity conservation? J. Appl. Ecol. 2014, 51, 1643–1649. [Google Scholar] [CrossRef]
- Madre, F.; Vergnes, A.; Machon, N.; Clergeau, P. Green roofs as habitats for wild plant species in urban landscapes: First insights from a large-scale sampling. Landsc. Urban Plan. 2014, 122, 100–107. [Google Scholar] [CrossRef]
- Gaertner, M.; Larson, B.M.; Irlich, U.M.; Holmes, P.M.; Stafford, L.; van Wilgen, B.W.; Richardson, D.M. Managing invasive species in cities: A framework from Cape Town, South Africa? Landsc. Urban Plan. 2016, 151, 1–9. [Google Scholar] [CrossRef]
- Buckley, Y.M.; Catford, J. Does the biogeographic origin of species matter? Ecological effects of native and non-native species and the use of origin to guide management. J. Ecol. 2016, 104, 4–17. [Google Scholar] [CrossRef]
- La Rosa, D.; Privitera, R. Characterization of non-urbanized areas for land-use planning of agricultural and green infrastructure in urban contexts. Landsc. Urban Plan. 2013, 109, 94–106. [Google Scholar] [CrossRef]
- Sanesi, G.; Colangelo, G.; Lafortezza, R.; Calvo, E.; Davies, C. Urban green infrastructure and urban forests: A case study of the Metropolitan Area of Milan. Landsc. Res. 2016. [Google Scholar] [CrossRef]
ES Section | Urban ES Class Type | Service Providing Unit |
---|---|---|
Regulating | Regulation of air quality | Forest, trees, shrubs |
Climate regulation through reduction of CO2 | Vegetation, soil | |
Urban temperature regulation | Forest, trees, shrubs, herbs, lawns, wetlands, water bodies | |
Noise mitigation | Forest, trees, shrubs, vegetated surfaces | |
Water flow regulation and run-off mitigation | Trees, shrubs, vegetated and permeable surfaces | |
Cultural | Nature based recreation | Parks, gardens, forest, trees, agricultural areas in the commuting zone, wetlands, water bodies, waterways, Natura 2000 sites |
Nature based education |
Capacity to Provide ES | Spatial Level and Geographic Location of the Estimates Available |
---|---|
Air pollutant removal by different physiognomic—structural vegetation categories | Local level estimates for the administrative region and the metropolitan area of Rome [27,28,29] |
Carbon mitigation by different forest types and tree species |
|
Cooling effect by different tree species frequently planted in cities |
|
Ability of different vegetation structures and hedgerow species to reduce noise levels |
|
Influence on stormwater run-off and its rate of discharge by different vegetation/tree canopy cover types | Local level estimates for North American cities [40] |
Development of people’s identity, attachment to natural environments, and increasing commitment toward nature protection by different conservation/development urban zones | Local level indications for the Municipality of Rome [41,42,43] |
ES Type | Ranking According to SITE Performance | ||
+++ | ++ | + | |
A. Nature-based recreation/education | Sectors with a core function for the combined conservation of natural, agricultural and human capital | Sectors a with a connection function between natural and urban systems | Sectors suitable for innovative and sustainable management strategies |
ES Type | Ranking According to SPECIES and COMMUNITIES Structure and/or Physiognomy Performance | ||
+++ | ++ | + | |
B1. Noise mitigation | Wide, tall and multi-stratified vegetation belts with evergreen species | Narrow, short and mono-stratified vegetation belts with deciduous species | |
B2. Noise mitigation | Evergreen hedges with denser foliage and branches and higher leaf mass per unit of leaf area (Pittosporum tobira and Laurus nobilis) | Evergreen hedges with less dense foliage and branches and lower leaf mass per unit of leaf area (Pyracantha coccinea and Nerium oleander) | |
C. Water flow regulation and run-off mitigation | High canopy coverage | Low canopy coverage | |
D1. Urban temperature regulation | Trees with smaller leaves (e.g., Robinia pseudoacacia, Pinus sylvestris) in parks | Trees with larger leaves (e.g., Acer platanoides, Aesculus hippocastanum, Platanus hispanica) along streets | |
D2. Urban temperature regulation | Trees with larger crown volume (Quercus pubescens) | Trees with narrower crown volume (Quercus ilex) | |
E1. Climate regulation through reduction of CO2 | Quercus ilex forests Exotic conifer forests Deciduous oak forests Fagus sylvatica forests White fir/Norway spruce forests | Castanea sativa forests Hygrophilous broadleaved forests Mediterranean pine forests Mountain pine forests Exotic broadleaved forests | Bushlands Mediterranean broadleaved deciduous forests |
E2. Climate regulation through reduction of CO2 | Quercus pubescens and Q. ilex | Platanus hispanica | |
F1. Regulation of air quality (particulate matter removal) | Conifer forests High Mediterranean maquis Mediterranean evergreen oak forests | Castanea sativa forests | Deciduous oak forests Fagus sylvatica forests |
F2. Regulation of air quality (ozone removal without extreme summer aridity) | Conifer forests (mainly with Pinus pinea) | Deciduous forests (mainly with oaks and exotic broadleaves) | Evergreen forests (mainly with Quercus ilex and Q. suber) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capotorti, G.; Del Vico, E.; Anzellotti, I.; Celesti-Grapow, L. Combining the Conservation of Biodiversity with the Provision of Ecosystem Services in Urban Green Infrastructure Planning: Critical Features Arising from a Case Study in the Metropolitan Area of Rome. Sustainability 2017, 9, 10. https://doi.org/10.3390/su9010010
Capotorti G, Del Vico E, Anzellotti I, Celesti-Grapow L. Combining the Conservation of Biodiversity with the Provision of Ecosystem Services in Urban Green Infrastructure Planning: Critical Features Arising from a Case Study in the Metropolitan Area of Rome. Sustainability. 2017; 9(1):10. https://doi.org/10.3390/su9010010
Chicago/Turabian StyleCapotorti, Giulia, Eva Del Vico, Ilaria Anzellotti, and Laura Celesti-Grapow. 2017. "Combining the Conservation of Biodiversity with the Provision of Ecosystem Services in Urban Green Infrastructure Planning: Critical Features Arising from a Case Study in the Metropolitan Area of Rome" Sustainability 9, no. 1: 10. https://doi.org/10.3390/su9010010
APA StyleCapotorti, G., Del Vico, E., Anzellotti, I., & Celesti-Grapow, L. (2017). Combining the Conservation of Biodiversity with the Provision of Ecosystem Services in Urban Green Infrastructure Planning: Critical Features Arising from a Case Study in the Metropolitan Area of Rome. Sustainability, 9(1), 10. https://doi.org/10.3390/su9010010