Decomposition of the Urban Water Footprint of Food Consumption: A Case Study of Xiamen City
Abstract
:1. Introduction
2. Methods and Case Study
2.1. Urban WF Accounting
2.2. LMDI Methodology on WF of Food Consumption
2.3. Study Case and Data Use
3. Results and Discussions
3.1. WF of Food Consumption in Xiamen
3.2. Decomposition of the WF of Urban Food Consumption
3.2.1. Water Footprint Intensity Effect
3.2.2. Food Consumption Structure Effect
3.2.3. Food Consumption Level Effect
3.2.4. Urban Population Rate Effect
3.2.5. Population Effect
3.3. Decomposition of the WF of Rural Food Consumption
3.3.1. Water Intensity Effect
3.3.2. Food Consumption Structure Effect
3.3.3. Food Consumption Level Effect
3.3.4. Rural Population Rate Effect
3.3.5. Population Effect
3.4. Cumulative Effect of WF Change of Food Consumption in Xiamen
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.A.; Hoffmann, S.; Lüthi, C.; Truffer, B.; Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 2016, 352, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Paterson, W.; Rushforth, R.; Ruddell, B.; Konar, M.; Ahams, I.; Gironás, J.; Mijic, A.; Mejia, A. Water Footprint of Cities: A Review and Suggestions for Future Research. Sustainability 2015, 7, 8461–8490. [Google Scholar] [CrossRef]
- Liu, J.; Yang, W. Water Sustainability for China and Beyond. Science 2012, 337, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Hu, Y.; Cui, S.; Kang, J.; Xu, L. Carbon footprints of food production in China (1979–2009). J. Clean. Prod. 2015, 90, 97–103. [Google Scholar]
- Keating, B.A.; Herrero, M.; Carberry, P.S.; Gardner, J.; Cole, M.B. Food wedges: Framing the global food demand and supply challenge towards 2050. Glob. Food Secur. 2014, 3, 125–132. [Google Scholar] [CrossRef]
- Song, G.; Li, M.; Semakula, H.M.; Zhang, S. Food consumption and waste and the embedded carbon, water and ecological footprints of households in China. Sci. Total Environ. 2015, 529, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Chapagain, A.K.; Hoekstra, A.Y. Virtual Water Trade: A Quantification of Virtual Water Flows between Nations in Relation to International Trade of Livestock and Livestock Products; IHE: Delft, The Netherlands, 2002. [Google Scholar]
- Jefferies, D.; Muñoz, I.; Hodges, J.; King, V.J.; Aldaya, M.; Ercin, A.E.; Milà i Canals, L.; Hoekstra, A.Y. Water Footprint and Life Cycle Assessment as approaches to assess potential impacts of products on water consumption. Key learning points from pilot studies on tea and margarine. J. Clean. Prod. 2012, 33, 155–166. [Google Scholar] [CrossRef]
- Manzardo, A.; Mazzi, A.; Loss, A.; Butler, M.; Williamson, A.; Scipioni, A. Lessons learned from the application of different water footprint approaches to compare different food packaging alternatives. J. Clean. Prod. 2016, 112, 4657–4666. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Routledge: London, UK, 2012. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed]
- Manzardo, A.; Loss, A.; Fialkiewicz, W.; Rauch, W.; Scipioni, A. Methodological proposal to assess the water footprint accounting of direct water use at an urban level: A case study of the Municipality of Vicenza. Ecol. Indic. 2016, 69, 165–175. [Google Scholar] [CrossRef]
- Boulay, A.M.; Hoekstra, A.Y.; Vionnet, S. Complementarities of water-focused life cycle assessment and water footprint assessment. Environ. Sci. Technol. 2013, 47, 11926–11927. [Google Scholar] [CrossRef] [PubMed]
- Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G. Water saving through international trade of agricultural products. Hydrol. Earth Syst. Sci. 2006, 10, 455–468. [Google Scholar] [CrossRef]
- Fader, M.; Gerten, D.; Thammer, M.; Heinke, J.; Lotze-Campen, H.; Lucht, W.; Cramer, W. Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade. Hydrol. Earth Syst. Sci. 2011, 15, 1641–1660. [Google Scholar] [CrossRef] [Green Version]
- Vanham, D. An assessment of the virtual water balance for agricultural products in EU river basins. Water Resour. Ind. 2013, 1–2, 49–59. [Google Scholar] [CrossRef]
- Papadopoulou, M.P.; Charchousi, D.; Tsoukala, V.K.; Giannakopoulos, C.; Petrakis, M. Water footprint assessment considering climate change effects on future agricultural production in Mediterranean region. Desalination Water Treat. 2016, 57, 2232–2242. [Google Scholar] [CrossRef]
- Zhuo, L.; Mekonnen, M.M.; Hoekstra, A.Y. Consumptive water footprint and virtual water trade scenarios for China—With a focus on crop production, consumption and trade. Environ. Int. 2016, 94, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Duarte, R.; Pinilla, V.; Serrano, A. The Spanish Food Industry on Global Supply Chains and Its Impact on Water Resources. Water 2015, 7, 132–152. [Google Scholar] [CrossRef]
- Sandström, V.; Kauppi, P.E.; Scherer, L.; Kastner, T. Linking country level food supply to global land and water use and biodiversity impacts: The case of Finland. Sci. Total Environ. 2017, 575, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Bulsink, F.; Hoekstra, A.Y.; Booij, M.J. The water footprint of Indonesian provinces related to the consumption of crop products. Hydrol. Earth Syst. Sci. 2010, 14, 119–128. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, H.-L.; Tong, W.-J.; Chen, F. The impact of local crops consumption on the water resources in Beijing. J. Clean. Prod. 2012, 21, 45–50. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, K.; Yu, Y.; Wang, X. Changes in water footprint of crop production in Beijing from 1978 to 2012: A logarithmic mean Divisia index decomposition analysis. J. Clean. Prod. 2015, 87, 180–187. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y.; Hu, Y.; Cui, S.; Zhao, S. Factor decomposition of Chinese GHG emission intensity based on the Logarithmic Mean Divisia Index method. Carbon Manag. 2014, 5, 579–586. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Zhang, M.; Song, X. Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China’s energy consumption. Energy 2014, 67, 617–622. [Google Scholar] [CrossRef]
- Ang, B.W.; Zhang, F. A survey of index decomposition analysis in energy and environmental studies. Energy 2000, 25, 1149–1176. [Google Scholar] [CrossRef]
- Ang, B.W.; Huang, H.C.; Mu, A.R. Properties and linkages of some index decomposition analysis methods. Energ Policy 2009, 37, 4624–4632. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.L. A new energy decomposition method: Perfect in decomposition and consistent in aggregation. Energy 2001, 26, 537–548. [Google Scholar] [CrossRef]
- Yang, C.; Cui, X. Global Changes and Drivers of the Water Footprint of Food Consumption: A Historical Analysis. Water 2014, 6, 1435–1452. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, B. Driving Force Analysis of the Agricultural Water Footprint in China Based on the LMDI Method. Environ. Sci. Technol. 2014, 48, 12723–12731. [Google Scholar] [CrossRef] [PubMed]
- Chenoweth, J.; Hadjikakou, M.; Zoumides, C. Quantifying the human impact on water resources: A critical review of the water footprint concept. Hydrol. Earth Syst. Sci. Dis. 2013, 10, 9389–9433. [Google Scholar] [CrossRef]
- Gu, Y.; Li, Y.; Wang, H.; Li, F. Gray Water Footprint: Taking Quality, Quantity, and Time Effect into Consideration. Water Resour. Manag. 2014, 28, 3871–3874. [Google Scholar] [CrossRef]
- Pfister, S.; Ridoutt, B.G. Water footprint: Pitfalls on common ground. Environ. Sci. Technol. 2014, 48, 4. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Finkbeiner, M. Methodological Challenges in Volumetric and Impact-Oriented Water Footprints. J. Ind. Ecol. 2013, 17, 79–89. [Google Scholar] [CrossRef]
- Pfister, S.; Boulay, A.-M.; Berger, M.; Hadjikakou, M.; Motoshita, M.; Hess, T.; Ridoutt, B.; Weinzettel, J.; Scherer, L.; Döll, P. Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) “A critique on the water-scarcity weighted water footprint in LCA”. Ecol. Indic. 2017, 72, 352–359. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resour. Manag. 2006, 21, 35–48. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y. Virtual Water Flows between Nations in Relation to Trade in Livestock and Livestock Products; UNESCO-IHE: Delft, The Netherlands, 2003. [Google Scholar]
- Liu, J.; Savenije, H.H. Food consumption patterns and their effect on water requirement in China. Hydrol. Earth Syst. Sci. Dis. 2008, 12, 887–898. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- The United Nations Educational, Scientific and Cultural Organization (UNESCO). The United Nations World Water Development Report 2016; UNESCO: Paris, France, 2016. [Google Scholar]
- FAO Software: CropWat. Available online: http://www.fao.org/nr/water/infores_databases_cropwat.html (accessed on 25 July 2016).
- Vanham, D.; Bidoglio, G. The water footprint of Milan. Water Sci. Technol. 2014, 69, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Scherer, L.; Pfister, S. Dealing with uncertainty in water scarcity footprints. Environ. Res. Lett. 2016, 11, 054008. [Google Scholar] [CrossRef]
Water Footprint Intensity | Food Consumption Structure | Food Consumption Level | Urban Population Rate | Population | |
---|---|---|---|---|---|
Grain | 20.90 | −82.12 | −20.62 | 31.54 | 86.58 |
Oil crops | −0.20 | −1.84 | −1.84 | 3.72 | 8.99 |
Vegetable | −8.75 | 4.68 | −3.42 | 7.19 | 17.54 |
Fruit | 10.82 | −5.30 | −5.61 | 10.47 | 22.95 |
Tea | −0.05 | −12.20 | −1.97 | 3.08 | 9.55 |
Meat | 0.00 | 206.93 | −54.53 | 108.53 | 248.34 |
Eggs | 0.00 | 6.22 | −5.75 | 10.66 | 26.43 |
Dairy | 0.00 | 14.30 | −3.48 | 7.54 | 16.26 |
Total | 22.72 | 130.66 | −97.23 | 182.73 | 436.64 |
Water Footprint Intensity Effect | Food Consumption Structure Effect | Food Consumption Level Effect | Rural Population Rate | Population Effect | |
---|---|---|---|---|---|
Grain | 14.38 | −23.69 | −6.24 | −71.46 | 56.91 |
Oil crops | −0.10 | 1.32 | −0.35 | −3.50 | 2.43 |
Vegetable | −0.78 | 1.28 | −0.38 | −3.52 | 2.58 |
Fruit | 0.74 | 0.53 | −0.28 | −2.64 | 1.81 |
Tea | −0.53 | 16.38 | −1.41 | −12.39 | 8.00 |
Meat | 0.00 | 6.33 | −4.85 | −68.07 | 53.13 |
Eggs | 0.00 | 2.01 | −0.41 | −4.51 | 3.28 |
Dairy | 0.00 | 2.78 | −0.02 | −2.11 | 1.13 |
Total | 13.71 | 6.93 | −13.94 | −168.21 | 129.28 |
Water Footprint Intensity Effect | Food Consumption Structure Effect | Food Consumption Level Effect | Urban/Rural Population Rate | Population | |
---|---|---|---|---|---|
Grain | 35.28 | −105.81 | −26.86 | −39.92 | 143.49 |
Oil crops | −0.30 | −0.52 | −2.19 | 0.22 | 11.42 |
Vegetable | −9.53 | 5.96 | −3.80 | 3.67 | 20.12 |
Fruit | 11.56 | −4.77 | −5.89 | 7.83 | 24.76 |
Tea | −0.58 | 4.18 | −3.38 | −9.31 | 17.55 |
Meat | 0.00 | 213.26 | −59.38 | 40.46 | 301.47 |
Eggs | 0.00 | 8.23 | −6.16 | 6.15 | 29.71 |
Dairy | 0.00 | 17.08 | −3.50 | 5.43 | 17.39 |
Total | 36.43 | 137.59 | −111.17 | 14.52 | 565.92 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Lin, J.; Zhao, X.; Zhao, S.; Kou, L. Decomposition of the Urban Water Footprint of Food Consumption: A Case Study of Xiamen City. Sustainability 2017, 9, 135. https://doi.org/10.3390/su9010135
Kang J, Lin J, Zhao X, Zhao S, Kou L. Decomposition of the Urban Water Footprint of Food Consumption: A Case Study of Xiamen City. Sustainability. 2017; 9(1):135. https://doi.org/10.3390/su9010135
Chicago/Turabian StyleKang, Jiefeng, Jianyi Lin, Xiaofeng Zhao, Shengnan Zhao, and Limin Kou. 2017. "Decomposition of the Urban Water Footprint of Food Consumption: A Case Study of Xiamen City" Sustainability 9, no. 1: 135. https://doi.org/10.3390/su9010135
APA StyleKang, J., Lin, J., Zhao, X., Zhao, S., & Kou, L. (2017). Decomposition of the Urban Water Footprint of Food Consumption: A Case Study of Xiamen City. Sustainability, 9(1), 135. https://doi.org/10.3390/su9010135