Characterisation of Nature-Based Solutions for the Built Environment
Abstract
:1. Introduction
2. A Generic Characterisation Process: From Community Initiatives to Policy Framework, and from Multiple Benefits Assessment to Design Optimisation
3. Dynamic Multiple Benefits of Nature Based Urban Actions
3.1. Health Benefits
3.2. Urban Heat Island Effect Mitigation Improving Thermal Comforts and Energy Saving
3.3. Carbon Capture and Sequestration
3.4. Biodiversity
3.5. Sustainable Water Management
3.6. Urban Agriculture
3.7. Air Quality through Bio-Infiltration
3.8. Acoustic Comfort
3.9. Jobs and Investment Opportunities
3.10. Social Cohesion and Pride
4. Discussion: Development of a Simplified Topology for Nature Based Solutions in the Built Environment
4.1. Indoor planting
4.2. Green Roofs
4.3. Green Walls
4.4. Urban Green and Blue Infrastructure
5. Built Environment Greening Design Decisions
5.1. Selection of Plants
5.2. Growing Medium and Structural Supporting Infrastructure
5.3. Irrigation and Water Management
5.4. Maintenance
6. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vale, B.; Vale, R. Domestic energy use, lifestyles and POE: Past lessons for current problems. Build. Res. Inf. 2010, 38, 578–588. [Google Scholar] [CrossRef]
- Baker, S.; Eckerberg, K. Ecological restoration success: A policy analysis understanding. Restor. Ecol. 2016. [Google Scholar] [CrossRef]
- Wangel, J.; Wallhagen, M.; Malmqvist, T.; Finnveden, G. Certification systems for sustainable neighbourhoods: What do they really certify? Environ. Impact Assess. Rev. 2016, 56, 200–213. [Google Scholar] [CrossRef]
- Hagen, K.; Stiles, R. Contribution of landscape design to changing urban climate conditions. In Urban Biodiversity and Design; Müller, N., Kelcey, J.G., Werner, P., Eds.; Wiley-Blackwell: Oxford, UK, 2010; pp. 572–592. [Google Scholar]
- Hirst, J.; Morley, J.; Bang, K. Functional Landscapes: Assessing elements of Seattle Green Factor. The Berger Partnership PS, 2008. Available online: http://www.seattle.gov/dpd/cs/groups/pan/@pan/documents/web_informational/dpds021359.pdf (accessed on 7 January 2017). [Google Scholar]
- Szulczewska, B.; Giedych, R.; Borowski, J.; Kuchcik, M.; Sikorski, P.; Mazurkiewicz, A.; Stańczyk, T. How much green is needed for a vital neighbourhood? In search for empirical evidence. Land Use Policy 2014, 38, 330–345. [Google Scholar] [CrossRef]
- Xiao, M.; Lin, Y.; Han, J.; Zhang, G. A review of green roof research and development in China. Renew. Sustain. Energy Rev. 2014, 40, 633–648. [Google Scholar] [CrossRef]
- Ong, B.L. Green Plot Ratio An ecological measure for architecture and urban planning. J. Landsc. Urban Plan. 2003, 63, 197–211. [Google Scholar] [CrossRef]
- Keeley, M. The Green Area Ratio: An urban site sustainability metric. J. Environ. Plan. Manag. 2011, 54, 937–958. [Google Scholar] [CrossRef]
- Kabisch, N.; Haase, D. Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landsc. Urban Plan. 2014, 122, 129–139. [Google Scholar] [CrossRef]
- Shrubsole, C.; Davies, M.M.; May, N. 100 Unintended consequences of policies to improve the energy efficiency of the UK housing stock. Indoor Built Environ. 2014, 23, 340–352. [Google Scholar] [CrossRef]
- Hardin, G. The tragedy of the commons. Science 1968, 162, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Lannon, S.C.; Eames, M. Exploring the use of systems dynamics in sustainable urban retrofit planning. In Urban Retrofitting for Sustainability: Mapping the Transition to 2050; Dixon, T., Ed.; Routledge: Abingdon, UK, 2014; pp. 49–70. [Google Scholar]
- Ahern, J. Greenways as planning strategy. Landsc. Urban Plan. 1995, 33, 131–155. [Google Scholar] [CrossRef]
- Dunnett, N.; Swanwick, C.; Helen, W. Improving Urban Parks, Play Areas and Green Spaces; Department for Transport, Local Government and the Regions: London, UK, 2002.
- Young, R.; Zanders, J.; Lieberknecht, K.; Fassman-Beck, E. A comprehensive typology for mainstreaming urban green infrastructure. J. Hydrol. 2014, 519, 2571–2583. [Google Scholar] [CrossRef]
- European Commission. Biodiversity Strategy in a Nutshell. 2011. Available online: http://ec.europa.eu/environment/nature/biodiversity/strategy/index_en.htm (accessed on 7 January 2017).
- Dover, J.W. Green Infrastructure: Incorporating Plants and Enhancing Biodiversity in Buildings and Urban Environment; Routledge: Oxon, UK, 2015. [Google Scholar]
- Tiwary, A.; Williams, I.D.; Heidrich, O.; Namdeo, A.; Bandaru, V.; Calfapietra, C. Development of multi-functional streetscape green infrastructure using a performance index approach. Environ. Pollut. 2016, 208, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Koc, C.B.; Osmond, P.; Peters, A. Towards a comprehensive green infrastructure typology: A systematic review of approaches, methods and typologies. Urban Ecosyst. 2016, 1–21. [Google Scholar] [CrossRef]
- Howard, E. Garden Cities of To-Morrow; Reprinted 2007; Routledge: London, UK, 1898. [Google Scholar]
- Seymour, J. The Complete Book of Self-Sufficiency; Faber: London, UK, 1976. [Google Scholar]
- Bates, C. What happened to the self-sufficient people of the 1970s? BBC News Magazine, 12 April 2016. [Google Scholar]
- Alexander, C. The Production of Houses; Oxford University Press: New York, NY, USA, 1985. [Google Scholar]
- Grant, G.; Engleback, L.; Nicholson, B.; Dusty, G.; Frith, M.; Harvey, P. Green Roofs: Their Existing Status and Potential for Conserving Biodiversity in Urban Areas; English Nature Report; English Nature: Peterborough, UK, 2003.
- Toronto-City-Planning. Toronto Green Roofs. City Planning Division Telephone Directory. 2015. Available online: http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=3a7a036318061410VgnVCM10000071d60f89RCRD (accessed on 7 January 2017).
- Wilebore, R.; Wentworth, J. Urban Green Infrastructure—POST Note; Parliamentary Office of Science and Technology: London, UK, 2013.
- Allen, W.L. Environmental reviews and case studies: Advancing green infrastructure at all scales: From landscape to site. Environ. Pract. 2012, 14, 17–25. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- European Climate KIC Blue Green Dream Project. 2016. Available online: http://bgd.org.uk/ (accessed on 7 January 2017).
- Musy, M.; Rodriguez, F.; Gutleben, C.; Rosant, J.-M.; Mestayer, P.; Inard, C.; Long, N. VegDUD Project: Role of vegetation in sustainable urban development. In Proceedings of the 8th International Conference on Urban Climates (ICUC8), Dublin, Ireland, 6–10 August 2012; p. 81.
- Mcsweeney, J.; Rainham, D.; Johnson, S.A.; Sherry, S.B.; Singleton, J. Indoor nature exposure (INE): A health-promotion framework. Health Promot. Int. 2014, 30, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Sundquist, K.; Frank, G.; Sundquist, J. Urbanisation and incidence of psychosis and depression: Follow-up study of 4.4 million women and men in Sweden. Br. J. Psychiatry 2004, 184, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Alcock, I.; White, M.P.; Wheeler, B.W.; Fleming, L.E.; Depledge, M.H. Longitudinal effects on mental health of moving to greener and less Green Urban Areas. Environ. Sci. Technol. 2014, 48, 1247–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annerstedt, M.; Ostergren, P.-O.; Björk, J.; Grahn, P.; Skärbäck, E.; Währborg, P. Green qualities in the neighbourhood and mental health—Results from a longitudinal cohort study in Southern Sweden. BMC Public Health 2012. [Google Scholar] [CrossRef] [PubMed]
- Raanaas, R.K.; Evensen, K.H.; Rich, D.; Sjøstrøm, G.; Patil, G. Benefits of indoor plants on attention capacity in an office setting. J. Environ. Psychol. 2011, 31, 99–105. [Google Scholar] [CrossRef]
- Wang, C.; Er, S.-S.; Abdul-Rahman, H. Indoor vertical greenery system in urban tropics. Indoor Built Environ. 2016, 25, 340–356. [Google Scholar] [CrossRef]
- Nunez, M.; Oke, T.R. The energy balance of an Urban Canyon. J. Appl. Meteorol. 1977, 16, 11–19. [Google Scholar] [CrossRef]
- Givoni, B. Passive and Low Energy Cooling of Buildings; Van Nostrand Reinhold: New York, NY, USA, 1994. [Google Scholar]
- Djedjig, R.; Ouldboukhitine, S.; Belarbi, R.; Bozonnet, E. Development and validation of a coupled heat and mass transfer model for green roofs. Int. Commun. Heat Mass Transf. 2012, 39, 752–761. [Google Scholar] [CrossRef]
- Mirzaei, P.A. Recent challenges in modeling of urban heat island. Sustain. Cities Soc. 2015, 19, 200–206. [Google Scholar] [CrossRef]
- Nishimura, N.; Nomura, T.; Iyota, H.; Kimoto, S. Novel water facilities for creation of comfortable urban micrometeorology. Sol. Energy 1998, 64, 197–207. [Google Scholar] [CrossRef]
- Jim, C.Y.; Tsang, S.W. Biophysical properties and thermal performance of an intensive green roof. Build. Environ. 2011, 46, 1263–1274. [Google Scholar] [CrossRef]
- Alcazar, S.S.; Olivieri, F.; Neila, J. Green roofs: Experimental and analytical study of its potential for urban microclimate regulation in Mediterranean-continental climates. Urban Clim. 2015, 17, 304–317. [Google Scholar] [CrossRef]
- Jo, H.-K.; McPherson, G.E. Carbon storage and flux in urban residential greenspace. J. Environ. Manag. 1995, 45, 109–133. [Google Scholar] [CrossRef]
- Torpy, F.R.; Irga, P.J.; Burchett, M.D. Profiling indoor plants for the amelioration of high CO2 concentrations. Urban For. Urban Green. 2014, 13, 227–233. [Google Scholar] [CrossRef]
- Rowntree, R.A.; Nowak, D.J. Quantifying the role of urban forests in removing atmospheric carbon dioxide. J. Arboric. 1991, 17, 269–275. [Google Scholar]
- Getter, K.L.; Rowe, D.B.; Robertson, G.P.; Cregg, B.M.; Andresen, J.A. Carbon sequestration potential of extensive green roofs. Environ. Sci. Technol. 2009, 43, 7564–7570. [Google Scholar] [CrossRef] [PubMed]
- Klimas, C.; Williams, A.; Hoff, M.; Lawrence, B.; Thompson, J.; Montgomery, J. Valuing ecosystem services and disservices across heterogeneous green spaces. Sustainability 2016, 8, 853. [Google Scholar] [CrossRef]
- Savard, J.P.L.; Clergeau, P.; Mennechez, G. Biodiversity concepts and urban ecosystems. Landsc. Urban Plan. 2000, 48, 131–142. [Google Scholar] [CrossRef]
- Farinha-Marques, P.; Lameiras, J.M.; Fernandes, C.; Silva, S.; Guilherme, F. Urban biodiversity: A review of current concepts and contributions to multidisciplinary approaches. Innov. Eur. J. Soc. Sci. Res. 2011, 24, 247–271. [Google Scholar] [CrossRef]
- Whitford, V.; Handley, J.; Ennos, R. City form and natural process-indicators for the ecological performance of urban areas. Landsc. Urban Plan. 2001, 57, 91–103. [Google Scholar] [CrossRef]
- Baldock, K.C.R.; Goddard, M.A.; Hicks, D.M.; Kunin, W.E.; Mitschunas, N.; Osgathorpe, L.M.; Potts, S.G.; Robertson, K.M.; Scott, A.V.; Stone, G.N.; et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B Biol. Sci. 2015, 282, 20142849. [Google Scholar] [CrossRef] [PubMed]
- Mason, C.F. Avian species richness and numbers in the built environment: Can new housing developments be good for birds? Biodivers. Conserv. 2006, 15, 2365–2378. [Google Scholar] [CrossRef]
- Beumer, C.; Martens, P. Biodiversity in my (back)yard: Towards a framework for citizen engagement in exploring biodiversity and ecosystem services in residential gardens. Sustain. Sci. 2015, 10, 87–100. [Google Scholar] [CrossRef]
- Silvertown, J. A new dawn for citizen science. Trends Ecol. Evol. 2009, 24, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Vineyard, D.; Ingwersen, W.W.; Hawkins, T.R.; Xue, X.; Demeke, B.; Shuster, W. Comparing green and grey infrastructure using life cycle cost and environmental impact: A rain garden case study in Cincinnati, OH. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 1342–1360. [Google Scholar] [CrossRef]
- Ellis, J.B. Sustainable surface water management and green infrastructure in UK urban catchment planning. J. Environ. Plan. Manag. 2012, 56, 24–41. [Google Scholar] [CrossRef]
- Rowe, D.B. Green roofs as a means of pollution abatement. Environ. Pollut. 2011, 159, 2100–2110. [Google Scholar] [CrossRef] [PubMed]
- Stovin, V.; Vesuviano, G.; Kasmin, H. The hydrological performance of a green roof test bed under UK climatic conditions. J. Hydrol. 2012, 414–415, 148–161. [Google Scholar] [CrossRef]
- Versini, P.-A.; Jouve, P.; Ramier, D.; Berthier, E.; de Gouvello, B. Use of green roofs to solve storm water issues at the basin scale—Study in the Hauts-de-Seine County (France). Urban Water J. 2016, 9006, 1–10. [Google Scholar] [CrossRef]
- Speak, F.; Rothwell, J.; Lindley, S.; Smith, C. Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmos. Environ. 2012, 61, 283–293. [Google Scholar] [CrossRef]
- Beecham, S.; Razzaghmanesh, M. Water quality and quantity investigation of green roofs in a dry climate. Water Res. 2015, 70, 370–384. [Google Scholar] [CrossRef] [PubMed]
- Despommier, D. The Vertical Farm: Feeding the World in the 21st Century; Thomas Dunne Books: New York, NY, USA, 2010. [Google Scholar]
- Thomaiera, S.; Spechta, K.; Dietrich, H.; Axel, D.; Rosemarie, S.; van den Dobbelsteen, A.; Magdalena, S. Farming in and on urban buildings: Present practice and specific novelties of Zero-Acreage Farming (ZFarming). Renew. Agric. Food Syst. 2015, 30, 43–54. [Google Scholar] [CrossRef]
- Viljoen, A.; Howe, J. Continuous Productive Urban Landscape (CPUL); Architectural Press: New York, NY, USA, 2005. [Google Scholar]
- Kozai, M.T.T.; Niu, G. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Tomalty, R.; Komorowski, B.; Doiron, D. The Monetary Value of the Soft Benefits of Green Roofs; Final Report; Canada Mortgage and Housing Corporation (CMHC): Ottawa, ON, Canada, 2010. [Google Scholar]
- Ksiazek, K.; Tonietto, R.; Ascher, J.S. Ten bee species new to green roofs in the Chicago area. Mich. Entomol. Soc. 2014, 47, 87–92. [Google Scholar]
- Tonietto, R.; Fant, J.; Ascher, J.; Ellis, K.; Larkin, D. Landscape and Urban Planning A comparison of bee communities of Chicago green roofs, parks and prairies. Landsc. Urban Plan. 2011, 103, 102–108. [Google Scholar] [CrossRef]
- MacIvor Scott, J.; Ruttan, A.; Salehi, B. Exotics on exotics: Pollen analysis of urban bees visiting Sedum on a green roof. Urban Ecosyst. 2014, 18, 419–430. [Google Scholar] [CrossRef]
- Hawkins, J.; de Vere, N.; Griffith, A.; Ford, C.R.; Allainguillaume, J.; Hegarty, M.J.; Baillie, L.; Adams-Groom, B. Using DNA metabarcoding to identify the floral composition of honey: A new tool for investigating honey bee foraging preferences. PLoS ONE 2015, 10, e0134735. [Google Scholar] [CrossRef] [PubMed]
- Wolverton, B.; Jhonson, A.; Training, O.; Training, P.; Darin, C.; Training, R.O.; Kimberly, M.; Deepa, G.; Board, E.; Principal, E.; et al. Interior Landscape Plants for Indoor Air Pollution Abatement; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 1989; pp. 1–5.
- Rosenfeld, A.H.; Akbari, H.; Romm, J.J.; Pomerantz, M. Cool communities: Strategies for heat island mitigation and smog reduction. Energy Build. 1998, 28, 51–62. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; MacKenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef] [PubMed]
- Speak, F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Metal and nutrient dynamics on an aged intensive green roof. Environ. Pollut. 2014, 184, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Environment Australia (EA). BTEX Personal Exposure Monitoring in Four Australian Cities; Technical Paper No. 6; Environment Australia: Canberra, Australia, 2003.
- Irga, P.J.; Torpy, F.R.; Burchett, M.D. Can hydroculture be used to enhance the performance of indoor plants for the removal of air pollutants? Atmos. Environ. 2013, 77, 267–271. [Google Scholar] [CrossRef]
- Owen, S.M.; Mackenzie, A.R.; Stewart, H.; Donovan, R.; Hewitt, C.N. Biogenic volatile organic compound (VOC) emission estimates from an urban tree canopy from an urban tree canopy. Ecol. Appl. 2013, 13, 927–938. [Google Scholar] [CrossRef]
- Torpy, F.R. Reducing indoor air pollutants through biotechnology. In Biotechnologies and Biomimetics for Civil Engineering; Springer: Cham, Switzerland, 2014; pp. 181–210. [Google Scholar]
- Azkorra, Z.; Pérez, G.; Coma, J.; Cabeza, L.F.; Bures, S.; Álvaro, J.E.; Erkoreka, A.; Urrestarazu, M. Evaluation of green walls as a passive acoustic insulation system for buildings. Appl. Acoust. 2015, 89, 46–56. [Google Scholar] [CrossRef]
- Connelly, M.; Hodgson, M. Experimental investigation of the sound absorption characteristics of vegetated roofs. Build. Environ. 2015, 92, 335–346. [Google Scholar] [CrossRef]
- D’Alessandro, F.; Asdrubali, F.; Mencarelli, N. Experimental evaluation and modelling of the sound absorption properties of plants for indoor acoustic applications. Build. Environ. 2015, 95, 913–923. [Google Scholar] [CrossRef]
- Adams, M.; Cox, T.; Moore, G.; Croxford, B.; Refaee, M.; Sharples, S. Sustainable soundscapes: Noise policy and the urban experience. Urban Stud. 2006, 43, 2385–2398. [Google Scholar] [CrossRef]
- Falxa-Raymond, N.; Svendsen, E.; Campbell, L.K. From job training to green jobs: A case study of a young adult employment program centered on environmental restoration in New York City, USA. Urban For. Urban Green. 2013, 12, 287–295. [Google Scholar] [CrossRef]
- Peng, L.L.H.; Jim, C.Y. Economic evaluation of green-roof environmental benefits in the context of climate change: The case of Hong Kong. Urban For. Urban Green. 2015, 14, 554–561. [Google Scholar] [CrossRef]
- Chang, K.F.; Chou, P.C. Measuring the influence of the greening design of the building environment on the urban real estate market in Taiwan. Build. Environ. 2010, 45, 2057–2067. [Google Scholar] [CrossRef]
- Elmqvist, T.; Setala, H.; Handel, S.N.; van der Ploeg, S.; Aronson, J.; Blignaut, J.N.; Gemez-Baggethun, E.; Nowak, D.J.; Kronenberg, J.; de Groot, R. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108. [Google Scholar] [CrossRef] [Green Version]
- De Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Kim, J.; Kaplan, R. Physical and psychological factors in sense of community: New urbanist kentlands and nearby orchard village. Environ. Behav. 2004, 36, 313–340. [Google Scholar] [CrossRef]
- Peters, K.; Elands, B.; Buijs, A. Social interactions in urban parks: Stimulating social cohesion? Urban For. Urban Green. 2010, 9, 93–100. [Google Scholar] [CrossRef]
- Scholte, S.S.K.; van Teeffelen, A.J.A.; Verburg, P.H. Integrating socio-cultural perspectives into ecosystem service valuation: A review of concepts and methods. Ecol. Econ. 2015, 114, 67–78. [Google Scholar] [CrossRef]
- Hunter, A.J.; Luck, G.W. Defining and measuring the social-ecological quality of urban greenspace: A semi-systematic review. Urban Ecosyst. 2015, 18, 1139–1163. [Google Scholar] [CrossRef]
- McMillen, H.; Campbell, L.K.; Svendsen, E.S.; Reynolds, R. Recognizing stewardship practices as indicators of social resilience: In living memorials and in a community garden. Sustainability 2016, 8, 775. [Google Scholar] [CrossRef]
- Kim, G. The public value of urban vacant land: Social responses and ecological value. Sustainability 2016, 8, 486. [Google Scholar] [CrossRef]
- Jensen, M.H. Hydroponics worldwide. Acta Hortic. 1999, 481, 719–729. [Google Scholar] [CrossRef]
- Love, D.C.; Uhl, M.S.; Genello, L. Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquac. Eng. 2015, 68, 19–27. [Google Scholar] [CrossRef]
- Davis, M.M.; Hirmer, S. The potential for vertical gardens as evaporative coolers: An adaptation of the ‘Penman Monteith Equation’. Build. Environ. 2015, 92, 135–141. [Google Scholar] [CrossRef]
- La Roche, P.; Berardi, U. Comfort and energy savings with active green roofs. Energy Build. 2014, 82, 492–504. [Google Scholar] [CrossRef]
- Jim, C.Y. Greenwall classification and critical design-management assessments. Ecol. Eng. 2015, 77, 348–362. [Google Scholar] [CrossRef]
- Charoenkit, S.; Yiemwattana, S. Living walls and their contribution to improved thermal comfort and carbon emission reduction: A review. Build. Environ. 2016, 105, 82–94. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Fraaij, A.L.A.; Haas, E.M.; Raiteri, R. Vertical greening systems and the effect on air flow and temperature on the building envelope. Build. Environ. 2011, 46, 2287–2294. [Google Scholar] [CrossRef]
- Yeang, K. Highrise design for hot humid places. Build. Res. Inf. 1991, 19, 274–281. [Google Scholar] [CrossRef]
- Hart, S.; Yeang, K.; Littlefield, D. Ecoarchitecture: The Work of Ken Yeang; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Swanwick, C. Society’s attitudes to and preferences for land and landscape. Land Use Policy 2009, 26, 62–75. [Google Scholar] [CrossRef]
- Chocat, B.; Ashley, R.; Marsalek, J.; Matos, M.R.; Rauch, W.; Schilling, W.; Urbonas, B. Toward the sustainable management of urban storm-water. Indoor Built Environ. 2007, 16, 273–285. [Google Scholar] [CrossRef]
- Trowbridge, P.J.; Bassuk, N.L. Trees in Urban Landscape: Site Assessment, Design and Installation; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Greenroofs. The International Greenroof & Greenwall Projects Database; Greenroofs.com., LLC.: Alpharetta, GA, USA, 2016. [Google Scholar]
- The International Green Roof Association (IGRA). Green Roof Database. International Green Roof City Network. 2016. Available online: http://www.igra-world.com/green_roofs_worldwide/green_roof_database.php (accessed on 16 May 2016).
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Choi, H.S.; Lee, G.S. Planning Support Systems (PSS)-based spatial plan alternatives and environmental assessment. Sustainability 2016, 8, 286. [Google Scholar] [CrossRef]
- Royal Botanic Gardens (RBG) Kew. State of the World’s Plants 2016. Available online: https://stateoftheworldsplants.com/report/sotwp_2016.pdf (accessed on 7 January 2017).
- Dunnett, N.; Noël, K. Planting Green Roofs and Living Walls; Timber Press: Portland, OR, USA, 2008. [Google Scholar]
- Calkings, M. The Sustainable Sites Handbook: A Complete Guide to the Principles, Strategies, and Best Practices for Sustainable Landscapes; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Blanusa, T.; Monteiro, M.M.V.; Fantozzi, F.; Vysini, E.; Li, Y.; Cameron, R.W.F. Alternatives to Sedum on green roofs: Can broad leaf perennial plants offer better ‘cooling service’? Build. Environ. 2013, 59, 99–106. [Google Scholar] [CrossRef]
- Cameron, R.W.F.; Taylor, J.E.; Emmett, M.R. What’s ‘cool’ in the world of green facades? How plant choice influences the cooling properties of green walls. Build. Environ. 2014, 73, 198–207. [Google Scholar] [CrossRef]
- White, E.V.; Gatersleben, B. Greenery on residential buildings: Does it affect preferences and perceptions of beauty? J. Environ. Psychol. 2011, 31, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Cameron, R.W.F.; Blanuša, T. Green infrastructure and ecosystem services—Is the devil in the detail? Ann. Bot. 2016, 118, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Eksi, M.; Rowe, D.B.; Fernández-Cañero, R.; Cregg, B.M. Effect of substrate compost percentage on green roof vegetable production. Urban For. Urban Green. 2015, 14, 315–322. [Google Scholar] [CrossRef]
- Brown, C.; Lundholm, J. Microclimate and substrate depth influence green roof plant community dynamics. Landsc. Urban Plan. 2015, 143, 134–142. [Google Scholar] [CrossRef]
- Sailor, D.J.; Hagos, M. An updated and expanded set of thermal property data for green roof growing media. Energy Build. 2011, 43, 2298–2303. [Google Scholar] [CrossRef]
- Pérez, G.; Vila, A.; Rincón, L.; Solé, C.; Cabeza, L.F. Use of rubber crumbs as drainage layer in green roofs as potential energy improvement material. Appl. Energy 2012, 97, 347–354. [Google Scholar] [CrossRef]
- Pérez, G.; Rincón, L.; Vila, A.; González, J.M.; Cabeza, L.F. Green vertical systems for buildings as passive systems for energy savings. Appl. Energy 2011, 88, 4854–4859. [Google Scholar] [CrossRef]
- Pérez, G.; Rincón, L.; Vila, A.; González, J.M.; Cabeza, L.F. Behaviour of green facades in Mediterranean Continental climate. Energy Convers. Manag. 2011, 52, 1861–1867. [Google Scholar] [CrossRef]
- Schumann, L.; Tilley, D. Modeled effects of roof vine canopy on indoor building temperatures in July. In Proceedings of the 6th North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Baltimore, MD, USA, 1–3 May 2008.
- Ottelé, M.; Perini, K.; Fraaij, A.L.A.; Haas, E.M.; Raiteri, R. Comparative life cycle analysis for green façades and living wall systems. Energy Build. 2011, 43, 3419–3429. [Google Scholar] [CrossRef]
- Ouldboukhitine, S.E.; Spolek, G.; Belarbi, R. Impact of plants transpiration, grey and clean water irrigation on the thermal resistance of green roofs. Ecol. Eng. 2014, 67, 60–66. [Google Scholar] [CrossRef]
- Van Mechelen, C.; Dutoit, T.; Hermy, M. Adapting green roof irrigation practices for a sustainable future: A review. Sustain. Cities Soc. 2015, 19, 74–90. [Google Scholar] [CrossRef]
- Bailey, R.M. Spatial and temporal signatures of fragility and threshold proximity in modelled semi-arid vegetation. Proc. R. Soc. B Biol. Sci. 2010, 278, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Rayner, J.P.; Raynor, K.J.; Williams, N.S.G. Façade greening: A case study from Melbourne, Australia. In Proceedings of the II International Conference on Landscape and Urban Horticulture, Bologna, Italy, 9–13 June 2009.
- Pauleit, S.; Jones, N.; Garcia-Martin, G.; Garcia-Valdecantos, J.L.; Rivière, L.M.; Vidal-Beaudet, L.; Bodson, M.; Randrup, T.B. Tree establishment practice in towns and cities—Results from a European survey. Urban For. Urban Green. 2002, 1, 83–96. [Google Scholar] [CrossRef]
- Diamant, E.; Waterhouse, A. Gardening and belonging: Reflections on how social and therapeutic horticulture may facilitate health, wellbeing and inclusion. Br. J. Occup. Ther. 2010, 73, 84–88. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. Green roofs: A critical review on the role of components, benefits, limitations and trends. Renew. Sustain. Energy Rev. 2016, 57, 740–752. [Google Scholar] [CrossRef]
- Herringshaw, C.J.; Thompson, J.R.; Stewart, T.W. Learning about restoration of urban ecosystems: A case study integrating public participation, stormwater management, and ecological research. Urban Ecosyst. 2010, 13, 535–562. [Google Scholar] [CrossRef]
- Roy, H.E.; Pocock, M.J.O.; Preston, C.D.; Roy, D.B.; Savage, J.; Tweddle, J.C.; Robinson, L.D. Understanding Citizen Science and Environmental Monitoring: Final Report on Behalf of UK-Environmental Observation Framework; NERC Centre for Ecology & Hydrology and Naturel History Museum: Wallingford, UK, 2012. [Google Scholar]
- Castell, N.; Kobernus, M.; Liu, H.Y.; Schneider, P.; Lahoz, W.; Berre, A.J.; Noll, J. Mobile technologies and services for environmental monitoring: The Citi-Sense-MOB approach. Urban Clim. 2015, 14, 370–382. [Google Scholar] [CrossRef]
- Goçer, O.; Hua, Y.; Goçer, K. Completing the missing link in building design process: Enhancing post-occupancy evaluation method for effective feedback for building performance. Build. Environ. 2015, 89, 14–27. [Google Scholar] [CrossRef]
- Wootton-Beard, P.; Xing, Y.; Prabhakaran, R.T.D.; Robson, P.; Bosch, M.; Thornton, J.M.; Ormondroyd, G.A.; Jones, P.; Donnison, I. Reviews: Improving the impact of plant science on urban planning and design. Buildings 2016, 6, 48. [Google Scholar] [CrossRef]
- Wilson, E.O. Biophilia: The Human Bond with Other Species; Harvard University Press: Cambridge, MA, USA, 1984. [Google Scholar]
Categories | Examples of Measured Key Benefits | Examples of Quantification and Data Collection Methods | References |
---|---|---|---|
Health impacts. | +Physiological and psychological benefits. | Survey, GIS mapping and models. | [34,35,36,37] |
UHI effects, mitigation and energy saving. | +UHI effects mitigation. +Heating and cooling for energy saving. | Laboratory testing. Outdoor test cells. In situ measurement. Computer simulation. | [38,39,40,41,42,43,44] |
Carbon sequestration. | +Photosynthesis for carbon sequestration. | Laboratory testing, e.g., gravimetric method | [45,46,47,48,49] |
Biodiversity. | +Type and size of plants and insects, other species, green and brown spaces. | Site observation. GIS mapping | [50,51,52,53,54,55] |
Sustainable water management. | +Stormwater retention. +Water quality. | Test rigs and modelling of runoff retention. Laboratory testing of pollutants. | [56,57,58,59,60,61,62,63] |
Urban agriculture. | + Local food supply. +Pollination services and urban honey. | Economic value. Food miles saved. | [64,65,66,67,68,69,70,71,72] |
Air quality through bio-infiltration. | +Percentage of air pollutants reduced. | In situ monitoring. Laboratory testing. Computer modelling. | [46,59,62,73,74,75,76,77,78,79,80] |
Acoustic comfort. | +Acoustic insulation (dB). +Noise pollution reduction and sound environment. | Laboratory testing. In situ measurement. | [81,82,83] |
Job and investment opportunities. | +Positive return on investment. +Job opportunities | NPV Calculation, surveys and interviews. | [84,85,86,87,88,89] |
Social cohesion and pride. | +Uses of urban parks by different groups. +Attachment to the community and increased interactions. | Survey, observation, interviews and spatial mapping. | [90,91,92,93,94,95] |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Y.; Jones, P.; Donnison, I. Characterisation of Nature-Based Solutions for the Built Environment. Sustainability 2017, 9, 149. https://doi.org/10.3390/su9010149
Xing Y, Jones P, Donnison I. Characterisation of Nature-Based Solutions for the Built Environment. Sustainability. 2017; 9(1):149. https://doi.org/10.3390/su9010149
Chicago/Turabian StyleXing, Yangang, Phil Jones, and Iain Donnison. 2017. "Characterisation of Nature-Based Solutions for the Built Environment" Sustainability 9, no. 1: 149. https://doi.org/10.3390/su9010149
APA StyleXing, Y., Jones, P., & Donnison, I. (2017). Characterisation of Nature-Based Solutions for the Built Environment. Sustainability, 9(1), 149. https://doi.org/10.3390/su9010149