An Emergy-Based Hybrid Method for Assessing Sustainability of the Resource-Dependent Region
Abstract
:1. Introduction
2. Study Area and Data Source
2.1. Study Area
2.2. Data Source
3. Methods
3.1. Emergy Analysis
3.2.The IPAT Model
3.3. Assessment Procedures
4. Results and Discussion
4.1. Emergy Flows of the City from 2007 to 2014
4.2. Emergy Indicators
4.3. The Application of IPAT Function
5. Policy Implications
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations ESCAP; United Nations Environment Programme. Green Growth, Resources and Resilience Environmental Sustainability in Asia and the Pacific; ADB Reports; United Nations ESCAP: Bangkok, Thailand; United Nations Environment Programme: Nairobi, Kenya, 2013. [Google Scholar]
- Zheng, J.; Zhang, L.; Che, W. A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment. Atmos. Environ. 2009, 43, 5112–5122. [Google Scholar] [CrossRef]
- Takeshita, T. Assessing the co-benefits of CO2, mitigation on air pollutants emissions from road vehicles. Appl. Energy 2012, 97, 225–237. [Google Scholar] [CrossRef]
- Cabaço, S.; Machás, R.; Vieira, V. Impacts of urban wastewater discharge on seagrass meadows (Zostera noltii). Estuar. Coast. Shelf Sci. 2008, 78, 1–13. [Google Scholar] [CrossRef]
- Wright I, A.; Mccarthy, B.; Belmer, N.; Price, P. Subsidence from an Underground Coal Mine and Mine Wastewater Discharge Causing Water Pollution and Degradation of Aquatic Ecosystems. Water Air Soil Pollut. 2015, 226, 1–14. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, S.; Geng, Y.; Xue, B.; Xi, F.; Pan, Y.; Zhang, T.; Fujita, T. Features, trajectories and driving forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and Chongqing. Energy 2012, 37, 245–254. [Google Scholar] [CrossRef]
- Olabi, A.G. State of the art on renewable and sustainable energy. Energy 2013, 61, 2–5. [Google Scholar] [CrossRef]
- Hossaini, N.; Hewage, K. Emergy accounting for regional studies: Case study of Canada and its provinces. J. Environ. Manag. 2013, 118, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Zhang, P. Measuring China’s Circular Economy. Science 2013, 339, 1526–1527. [Google Scholar] [CrossRef] [PubMed]
- Decker, E.H.; Elliott, S.; Smith, F.A.; Blake, D.R.; Rowland, F.S. Energy and material flow through the urban ecosystem. Annu. Rev. Energy Environ. 2000, 25, 685–740. [Google Scholar] [CrossRef]
- Papaspyropoulos, K.G.; Karamanolis, D.; Sokos, C.K.; Birtsas, P.K. Enhancing Sustainability in Forestry Using Material Flow Cost Accounting. Open J. For. 2016, 06, 324–336. [Google Scholar]
- Pratt, K.; Lenaghan, M.; Mitchard, E.T.A. Material flows accounting for Scotland shows the merits of a circular economy and the folly of territorial carbon reporting. Carbon Balance Manag. 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Steemers, K. Energy and the city: Density, buildings and transport. Energy Build. 2003, 35, 3–14. [Google Scholar] [CrossRef]
- Li, S.; Gao, L.; Jin, H. Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China. Energy Convers. Manag. 2016, 112, 91–100. [Google Scholar] [CrossRef]
- Nian, V. Analysis of interconnecting energy systems over a synchronized life cycle. Appl. Energy 2016, 165, 1024–1036. [Google Scholar] [CrossRef]
- Muñiz, I.; Galindo, A. Urban form and the ecological footprint of commuting. The case of Barcelona. Ecol. Econ. 2005, 55, 499–514. [Google Scholar] [CrossRef]
- Mikulčić, H.; Cabezas, H.; Vujanović, M.; Duic, N. Environmental assessment of different cement manufacturing processes based on Emergy and Ecological Footprint analysis. J. Clean. Prod. 2016, 130, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Wang, Z.; Zhang, H. Dynamic Changes of the Ecological Footprint and Its Component Analysis Response to Land Use in Wuhan, China. Sustainability 2016, 8, 329. [Google Scholar] [CrossRef]
- Odum, H.T. Environmental accounting: Emergy and environmental decision making. Child Dev. 1996, 42, 1187–1201. [Google Scholar]
- Kennedy, C.; Pincetl, S.; Bunje, P. The study of urban metabolism and its applications to urban planning and design. Environ. Pollut. 2010, 159, 1965–1973. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.T.; Brown, M.T. Environmental accounting of natural capital and ecosystem services for the US National Forest System. Environ. Dev. Sustain. 2012, 14, 691–724. [Google Scholar] [CrossRef]
- Ascione, M.; Bargigli, S.; Campanella, L.; Ulgiati, S. Exploring an Urban System’s Dependence on the Environment as a Source and a Sink: The City of Rome (Italy) Across Space and Time Scales. Chemsuschem 2011, 4, 613–627. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liu, W.; Geng, Y.; Ohnishi, S.; Sun, L.; Han, W.; Tian, X.; Zhong, S. Life cycle based emergy analysis on China’s cement production. J. Clean. Prod. 2016, 131, 272–279. [Google Scholar] [CrossRef]
- Odum, H.T.; Odum, E.C.; Blissett, M. Ecology and Economy: “Emergy” Analysis and Public Policy in Texas; University of Texas at Austin: Austin, TX, USA, 2013. [Google Scholar]
- Liu, Z.; Geng, Y.; Zhang, P.; Dong, H.; Liu, Z. Emergy-based comparative analysis on industrial clusters: Economic and technological development zone of Shenyang area, China. Environ. Sci. Pollut. Res. 2014, 21, 10243–10253. [Google Scholar] [CrossRef] [PubMed]
- Mingquan, W.; Jinda, W.; Jingshuang, L. Emergy Analysis of the Land Use Practices in West Jilin Province, a Typical Area of the Agro-pastoral Transition Zone in Northern China. Prog. Environ. Sci. Technol. 2009, 29, 49–56. [Google Scholar]
- Vega-Azamar, R.E.; Glaus, M.; Hausler, R.; Oropeza-García, N.A.; Romero-López, R. An emergy analysis for urban environmental sustainability assessment, the Island of Montreal, Canada. Landsc. Urban Plan. 2013, 118, 18–28. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Liu, G.; Yu, X. Emergy analysis of the urban metabolism of Beijing. Ecol. Model. 2011, 222, 2377–2384. [Google Scholar] [CrossRef]
- Fan, Y.; Qiao, Q.; Fang, L.; Yao, Y. Emergy analysis on industrial symbiosis of an industrial park—A case study of Hefei economic and technological development area. J. Clean. Prod. 2017, 141, 791–798. [Google Scholar] [CrossRef]
- Liu, Z.; Geng, Y.; Ulgiati, S.; Park, H.-S.; Tsuyoshi, F.; Wang, H. Uncovering key factors influencing one industrial park’s sustainability: A combined evaluation method of emergy analysis and index decomposition analysis. J. Clean. Prod. 2015, 114, 141–149. [Google Scholar] [CrossRef]
- Ascione, M.; Campanella, L.; Chrerubini, F.; Ulgiati, S. Environmental driving forces of urban growth and development: An emergy-based assessment of the city of Rome, Italy. Landsc. Urban Plan. 2009, 93, 238–249. [Google Scholar] [CrossRef]
- Ulgiati, S.; Odum, H.T.; Bastianoni, S. Emergy use, environmental loading and sustainability an emergy analysis of Italy. Ecol. Model. 1994, 73, 215–268. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, T. Urban Metabolism in China Achieving Dematerialization and Decarbonization in Suzhou. J. Ind. Ecol. 2011, 15, 420–434. [Google Scholar] [CrossRef]
- Xie, H. Environmental sustainability in Chongqing Municipality, China. Int. J. Glob. Warm. 2012, 4, 1–12. [Google Scholar] [CrossRef]
- González-Mejía, A.M.; Ma, X. The Emergy Perspective of Sustainable Trends in Puerto Rico from 1960 to 2013. Ecol. Econ. 2017, 133, 11–22. [Google Scholar] [CrossRef]
- Yang, D.; Kao, W.T.M.; Zhang, G.; Zhang, N. Evaluating spatiotemporal differences and sustainability of Xiamen urban metabolism using emergy synthesis. Ecol. Model. 2014, 272, 40–48. [Google Scholar] [CrossRef]
- Zeng, X.; Yao, J.; Sun, H. Sustainability assessment on eco-economic system of Chengdu City based on emergy analysis. Chin. J. Ecol. 2011, 30, 2875–2880. [Google Scholar]
- Pulselli, R.M.; Pulselli, F.M.; Rustici, M. Emergy accounting of the Province of Siena: Towards a thermodynamic geography for regional studies. J. Environ. Manag. 2008, 86, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Cao, M.M. Evaluation on development level of circular economy of resource-based city with the Emergy Theory: A case of Yulin city. Arid Land Geogr. 2013, 36, 528–535. [Google Scholar]
- Sun, Y.F.; Guo, Q.Y. Ecological efficiency analysis of the circular economy system in mining area based on emergy analytic approach. Acta Ecol. Sin. 2014, 34, 710–717. [Google Scholar]
- Bian, L.L.; Han, Q.; Zhang, A.H. Emergy-based eco-efficiency evaluation of coal mining area. J. China Coal Soc. 2013, 38, 549–556. [Google Scholar]
- Cao, Z.G.; Zhao, Y.Q.; Yuan, F.; Li, C.P. Analysis on Development Degree of Mining Cities of China Based on Emergy Theory. China Pop. Resour. Environ. 2010, 20, 56–61. [Google Scholar]
- Guo, C.Z.; Luo, L.L.; Ye, M. Empirical analysis of factors the sustainable development of resource-based cities. China Pop. Resour. Environ. 2014, 24, 81–89. [Google Scholar]
- Ding, L.; Shi, Z.L. Economic transition of resource dependent cities-A case study of Taiyuan. J. Tsinghua Univ. 2000, 15, 52–57. [Google Scholar]
- Tang, D.L.; Wang, C.C.; Nie, J.S.; Chen, R.J.; Niu, Q.; Kan, H.D.; Chen, B.H.; Perera, F. Health benefits of improving air quality in Taiyuan, China. Environ. Int. 2014, 73, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Taiyuan Bureau of Statistics. Taiyuan Bureau of Statistics, Taiyuan Statistics Yearbook, 2007–2015; China Statistics Press: Beijing, China, 2007–2015.
- Odum, H.T.; Odum, E.C. A Prosperous Way Down: Principles and Policies; ISAER Org: Wakefield, MA, USA, 2001. [Google Scholar]
- Odum, H.T. Environmental Accounting: Energy and Environmental Decision Making; John Wiley and Sons Inc.: New York, NY, USA, 1996. [Google Scholar]
- Odum, H.T.; Brown, M.T.; Brandt-Williams, S.B. Handbook of Emergy Evaluation: A Compendium of Data for Emergy Computation Issued in a Series of Folios; Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2000. [Google Scholar]
- Brown, M.T.; Ulgiati, S. Emergy evaluations and environmental loading of electricity production systems. J. Clean. Prod. 2002, 10, 321–334. [Google Scholar] [CrossRef]
- Song, T.; Cai, J.M.; Du, S.S.; Ni, P.; Ding, Y. Emergy analysis of urban metabolism in Beijing. J. Arid Land Resour. Environ. 2015, 29, 37–42. [Google Scholar]
- Brown, M.T.; Ulgiati, S. Emergy-based indices and ratios to evaluate sustainability: Monitoring economies and technology toward environmentally sound innovation. Ecol. Eng. 1997, 9, 51–69. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of population growth. Philos. Mag. 1970, 171, 1212–1217. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, X.; Zhu, Q.; Zhao, H. Regional initiatives on promoting cleaner production in China: A case of Liaoning. J. Clean. Prod. 2010, 18, 1502–1508. [Google Scholar] [CrossRef]
- Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32, 912–919. [Google Scholar] [CrossRef]
- Zang, X.; Zhao, T.; Wang, J.; Guo, F. The effects of urbanization and household-related factors on residential direct CO2, emissions in Shanxi, China from 1995 to 2014: A decomposition analysis. Atmos. Pollut. Res. 2016. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Zhang, H. An ecosystem service valuation of land use change in Taiyuan City, China. Ecol. Model. 2012, 225, 127–132. [Google Scholar] [CrossRef]
Flows | Item | Unit | Transformity (sej/Unit) | Reference |
---|---|---|---|---|
Renewable resource emergy (R) | Solar energy | J | 1 | [48] |
Wind Energy | J | 2.45 × 103 | [49] | |
Rainfall energy (chemical) | J | 3.05 × 104 | [49] | |
Rainfall energy (geo-potential) | J | 4.70 × 104 | [49] | |
Earth cycle energy | J | 5.80 × 104 | [49] | |
Agricultural products | g | 4.08 × 1011 | [48] | |
Livestock | g | 2.50 × 1011 | [48] | |
Aquatic products | g | 3.02 × 1010 | [48] | |
Non-renewable resource emergy (N) | Losses of topsoil | t | 1.71 × 103 | [49] |
Electricity | J | 2.69 × 105 | [48] | |
Steel | g | 3.02 × 109 | [48] | |
Raw coal | J | 6.72 × 104 | [48] | |
Petroleum | J | 1.86 × 105 | [48] | |
Diesel | J | 1.86 × 105 | [48] | |
Natural gas | J | 8.06 × 104 | [48] | |
Fuel oil | J | 6.25 × 104 | [49] | |
Chemical fertilizer | t | 8.28 × 106 | [50] | |
Imported emergy (IM) | Goods income | $ | 9.37 × 1012 | [49] |
Tourism income | $ | 1.66 × 1012 | [50] | |
Exported emergy (EX) | Goods and service income | $ | 6.34 × 1012 | [49] |
Emergy Indicators | Unit | Formula | Explanation |
---|---|---|---|
Total emergy per year (U) | Sej | R + N + IM | Total emergy (the export is not included) |
Emergy money ratio (EMR) | sej/yuan | U/GDP | Emergy flux produced per unit of purchasing power |
Emergy per capita (EP) | sej/cap | U/Population | The ratio can reflect the true life quality of local citizens |
Environmental loading ratio (ELR) | 1 | (N + IM)/R | The ration can reflect the pressure of economic activities on the local ecosystem |
Emergy yield ratio (EYR) | 1 | (R + N + IM)/IM | The capacity of resource output of the local system |
Emergy sustainable index (ESI) | 1 | EYR/ELR | The sustainability capacity of the local system |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, L.; Shi, X.; Liu, C.; Yuan, Y. An Emergy-Based Hybrid Method for Assessing Sustainability of the Resource-Dependent Region. Sustainability 2017, 9, 153. https://doi.org/10.3390/su9010153
Qu L, Shi X, Liu C, Yuan Y. An Emergy-Based Hybrid Method for Assessing Sustainability of the Resource-Dependent Region. Sustainability. 2017; 9(1):153. https://doi.org/10.3390/su9010153
Chicago/Turabian StyleQu, Lulu, Xueyi Shi, Chang Liu, and Ye Yuan. 2017. "An Emergy-Based Hybrid Method for Assessing Sustainability of the Resource-Dependent Region" Sustainability 9, no. 1: 153. https://doi.org/10.3390/su9010153
APA StyleQu, L., Shi, X., Liu, C., & Yuan, Y. (2017). An Emergy-Based Hybrid Method for Assessing Sustainability of the Resource-Dependent Region. Sustainability, 9(1), 153. https://doi.org/10.3390/su9010153