Land Suitability Assessment for Camelina (Camelina sativa L.) Development in Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Climate Adaptable Ranges
2.3. Soil Adaptable Ranges
2.4. Agro-Ecological Zoning
3. Results
3.1. Climatic Information
3.2. Thermic Factors
3.3. Water Availability Factors
3.4. Edaphic Factors
3.5. Soil Zoning
3.6. Limitations
3.7. Agro-Ecological Zoning
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Román, C.; Vásquez, K.; Martínez, G.; Lillo, G.; Fuster, R.; de la Fuente, A.; Uribe, J.M.; Faúndez, L.O.; Paneque, M. Cultivos Energeticos una Apuesta de Futuro; Universidad de Chile: Santiago, Chile, 2012. (In Spanish) [Google Scholar]
- Zubr, J. Qualitative variation of Camelina sativa seed from different locations. Ind. Crop. Prod. 2003, 17, 161–169. [Google Scholar] [CrossRef]
- Bernardo, A.; Howard-Hildige, R.; O’Connell, A.; Nichol, R.; Ryan, J.; Rice, B.; Roche, E.; Leahy, J.J. Camelina oil as a fuel for diesel transport engines. Ind. Crop. Prod. 2003, 17, 191–197. [Google Scholar] [CrossRef]
- Frohlich, A.; Rice, B. Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crop. Prod. 2005, 21, 25–31. [Google Scholar] [CrossRef]
- Berti, M.T.; Wilckens, R.; Fischer, S.; Solis, A.; Johnson, B.L. Seeding date influence on camelina seed yield, yield components, and oil content in Chile. Ind. Crop. Prod. 2011, 34, 1358–1365. [Google Scholar] [CrossRef]
- Budin, J.T.; Breene, W.M.; Putnam, D.H. Some compositional properties of camelina (Camelina sativa L. Crantz) seeds and oils. J. Am. Oil Chem. Soc. 1995, 72, 309–315. [Google Scholar] [CrossRef]
- Zubr, J.; Matthäus, B. Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind. Crop. Prod. 2002, 15, 155–162. [Google Scholar] [CrossRef]
- Eidhin, D.N.; Burke, J.; Lynch, B.; O’Beirne, D. Effects of dietary supplementation with camelina oil on porcine blood lipids. J. Food Sci. 2003, 68, 671–679. [Google Scholar] [CrossRef]
- Przybylski, R.; Mag, T.; Eskin, N.A.M.; McDonald, B.E. Canola oil. In Bailey’s Industrial Oil and Fat Products; Shahidi, F., Ed.; Wiley-Interscience: New York, NY, USA, 2005; pp. 61–121. [Google Scholar]
- Angelini, L.G.; Moscheni, E.; Colonna, G.; Belloni, P.; Bonari, E. Variation in agronomic characteristics and seed oil composition of new oilseed crops in central Italy. Ind. Crop. Prod. 1997, 6, 313–323. [Google Scholar] [CrossRef]
- French, A.N.; Hunsaker, D.; Thorp, K.; Clarke, T. Evapotranspiration over a camelina crop at Maricopa, Arizona. Ind. Crop. Prod. 2009, 29, 289–300. [Google Scholar] [CrossRef]
- Vollmann, J.; Moritz, T.; Kargl, C.; Baumgartner, S.; Wagentristl, H. Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Ind. Crop. Prod. 2007, 26, 270–277. [Google Scholar] [CrossRef]
- Gesch, R.W.; Cermak, S.C. Sowing Date and Tillage Effects on Fall-Seeded Camelina in the Northern Corn Belt. Agron. J. 2011, 103, 980. [Google Scholar] [CrossRef]
- Gesch, R.W. Influence of genotype and sowing date on camelina growth and yield in the north central U.S. Ind. Crop. Prod. 2014, 54, 209–215. [Google Scholar] [CrossRef]
- Guy, S.O.; Wysocki, D.J.; Schillinger, W.F.; Chastain, T.G.; Karow, R.S.; Garland-Campbell, K.; Burke, I.C. Camelina: Adaptation and performance of genotypes. Field Crop. Res. 2014, 155, 224–232. [Google Scholar] [CrossRef]
- Solis, A.; Vidal, I.; Paulino, L.; Johnson, B.L.; Berti, M.T. Camelina seed yield response to nitrogen, sulfur, and phosphorus fertilizer in South Central Chile. Ind. Crop. Prod. 2013, 44, 132–138. [Google Scholar] [CrossRef]
- Wysocki, D.J.; Chastain, T.G.; Schillinger, W.F.; Guy, S.O.; Karow, R.S. Camelina: Seed yield response to applied nitrogen and sulfur. Field Crop. Res. 2013, 145, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Román-Figueroa, C.; Paneque, M. Ethics and Biofuel Production in Chile. J. Agric. Environ. Ethics 2015, 28, 293–312. [Google Scholar] [CrossRef]
- Uribe, J.M.; Cabrera, R.; de la Fuente, A.; Paneque, M. Atlas Bioclimático de Chile; Universidad de Chile: Santiago, Chile, 2012. (In Spanish) [Google Scholar]
- Food and Agriculture Organization. Mapa Mundial de Suelos; UNESCO: París, Francia, 1971. (In Spanish) [Google Scholar]
- Ministerio del Medio Ambiente. Sistema Nacional de Información Ambiental. 2014. Available online: http://ide.mma.gob.cl/produccion/ (accesed on 13 April 2016). (In Spanish)
- Novak, V. Methods of Evapotranspiration Estimation. In Evapotranspiration in the Soil-Plant-Atmosphere System; Novák, V., Ed.; Springer-Verlag: Berlin, Germany, 2005; pp. 165–215. [Google Scholar]
- Atroosh, K.B.; Mukred, A.W.O.; Moustafa, A.T. Water requirement of grape (Vitis vinifera) in the Northern highlands of Yemen. J. Agric. Sci. 2013, 5, 136–145. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. A Framework for Land Evaluation; FAO: Rome, Italy, 1976. [Google Scholar]
- Rossiter, D.G. A theoretical framework for land evaluation. Geoderma 1996, 72, 165–190. [Google Scholar] [CrossRef]
- Labra, F. Zonificación Agroecológica Preliminar para el Establecimiento de Áreas Potenciales de Cultivo de Jatropha curcas L. con Fines Bioenergéticos Entre las Regiones de Antofagasta y Valparaíso; Universidad de Chile: Santiago, Chile, 2009. (In Spanish) [Google Scholar]
- Burrough, P.A.; McDonnell, R.A. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Missouri Botanical Garden. Tropicos. 2016. Available online: www.tropicos.org (accessed on 7 March 2016).
- Malhi, S.S.; Johnson, E.N.; Hall, L.M.; May, W.E.; Phelps, S.; Nybo, B. Effect of nitrogen fertilizer application on seed yield, N uptake, and seed quality of Camelina sativa. Can. J. Soil Sci. 2014, 94, 35–47. [Google Scholar] [CrossRef]
- Abramovic, H.; Abram, V. Physico-chemical properties, composition and oxidative stability of Camelina sativa oil. Food Technol. Biotechnol. 2005, 43, 63–70. [Google Scholar]
- Pavlista, A.D.; Baltensperger, D.D.; Isbell, T.A.; Hergert, G.W. Comparative growth of spring-planted canola, brown mustard and camelina. Ind. Crop. Prod. 2012, 36, 9–13. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Zheljazkov, V.D.; Obour, A.K.; Garcia y Garcia, A.; Foulke, T.K. Influence of nitrogen and sulfur application on camelina performance under dryland conditions. Ind. Crop. Prod. 2015, 70, 253–259. [Google Scholar] [CrossRef]
- Karčauskienė, D.; Sendžikienė, E.; Makarevičienė, V.; Zaleckas, E.; Repšienė, R.; Ambrazaitienė, D. False flax (Camelina sativa L.) as an alternative source for biodiesel production. Zemdirbyste 2014, 101, 161–168. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; French, A.N.; Clarke, T.R.; El-Shikha, D.M. Water use, crop coefficients, and irrigation management criteria for camelina production in arid regions. Irrig. Sci. 2011, 29, 27–43. [Google Scholar] [CrossRef]
- Jha, P.; Stougaard, R.N. Camelina (Camelina sativa) tolerance to selected preemergence herbicides. Weed Technol. 2013, 27, 712–717. [Google Scholar] [CrossRef]
- Chen, C.; Bekkerman, A.; Afshar, R.K.; Neill, K. Intensification of dryland cropping systems for bio-feedstock production: Evaluation of agronomic and economic benefits of Camelina sativa. Ind. Crop. Prod. 2015, 71, 114–121. [Google Scholar] [CrossRef]
- Santibáñez, F.; Mendoza, J.; Muñoz, C.; Caroca, C.; Santibañez, P.; Prat, L. Systems to establish bioclimatic analogies to predict the area of adaptability of plant species to new environments: The case of Moringa oleifera Lam. in Chile. Chil. J. Agric. Res. 2015, 75, 425–433. [Google Scholar] [CrossRef]
- Falasca, S.L.; Fresno, M.C.; Waldman, C. Developing an agro-climatic zoning model to determine potential growing areas for Camelina sativa in Argentina. QScience Connect 2014, 4. [Google Scholar] [CrossRef]
- Zema, D.A.; Bombino, G.; Andiloro, S.; Zimbone, S.M. Irrigation of energy crops with urban wastewater: Effects on biomass yields, soils and heating values. Agric. Water Manag. 2012, 115, 55–65. [Google Scholar] [CrossRef]
- Astier-Calderón, M.; Maass-Moreno, M.; Etchevers-Barra, J. Derivación de indicadores de calidad de suelos en el contexto de la agricultura sustentable. Agrociencia 2002, 36, 605–620. (In Spanish) [Google Scholar]
Country | City/Town | Geographic Coord. | Reference | |
---|---|---|---|---|
Latitude | Longitude | |||
Germany | Müllheim | 47°48′N | 007°37′E | [2] |
Germany | Soest | 51°34′N | 008°06′E | [2] |
Denmark | Taastrup | 56°07′N | 009°59′E | [2] |
Scotland | Aberdeen | 57°08′N | 002°05′O | [2] |
Finland | Helsinki | 60°10′N | 024°56′E | [2] |
England | Tadcaster | 53°52′N | 001°15′O | [2] |
Ireland | Knockbeg | 52°51′N | 006°56′O | [2] |
Sweden | Uppsala | 59°51′N | 017°38′E | [2] |
Chile | Gorbea | 39°05′S | 072°40′O | [5] |
United States | Rosemount | 44°44′N | 093°07′O | [6] |
Italy | Pisa | 43°40′N | 010°19′E | [10] |
United States | Maricopa | 33°03′N | 112°02′O | [11] |
Austria | Gross Enzersdorf | 48°11′N | 016°33′E | [12] |
United States | Morris | 45°35′N | 095°54′O | [14] |
United States | Lewiston | 46°23′N | 116°58′O | [15] |
United States | Pendleton | 45°43′N | 118°37′O | [17] |
Argentina | Ensenada | 34°55′S | 057°57′O | [28] |
United States | Cass | 38°38′N | 094°21′O | [28] |
United States | Jackson | 39°06′N | 094°30′O | [28] |
United States | Saint Louis | 38°38′N | 090°14′O | [28] |
France | Doullens | 50°09′N | 002°20′E | [28] |
Canada | Swift Current | 50°17′N | 107°47′O | [29] |
Canada | Lethbridge | 49°41′N | 112°50′O | [29] |
Slovenia | Prevalje | 46°32′N | 014°52′E | [30] |
United States | Scottsbluff | 41°50′N | 103°41′O | [31] |
United States | Wyarno | 44°48′N | 106°46′O | [32] |
Lithuania | Vėžaičiai | 55°43′N | 021°27′E | [33] |
Parameters | Aptitude | Range of Aptitude |
---|---|---|
TMX (°C) | Restricted | <21; >31 |
Mild restriction | 21–23.5; 28.5–31 | |
Without restriction | 23.5–28.5 | |
DD | Restricted | <500 |
Mild restriction | 500–750 | |
Without restriction | >750 | |
WD (mm) | Restricted | <–500 |
Moderate restriction | –500–(–250) | |
Mild restriction | –250–0 | |
Without restriction | >0 |
Country | City/Town | Soil Type | References | |
---|---|---|---|---|
Publication | FAO | |||
Chile | El Carmen | Typic Haploxerand | Vitric Andosol | [5,16] |
Chile | Los Ángeles | Typic Haploxerand | Vitric Andosol | [5,16] |
Chile | Osorno | Typic Haploxerand | Vitric Andosol | [5,16] |
Chile | Gorbea | Typic Dystrandepts | Humic Andosol | [5,16] |
Chile | Chillán | Humic Haploxerand | Humic Andosol | [5,16] |
United States | Maricopa | Typic Natrargids | Orthic Solonetz | [11,34] |
United States | Morris | Calcic Hapludolls | Calcic Chernozem | [13] |
United States | Pendleton | Typic Haploxerand | Vitric Andosol | [15,17] |
United States | Lind | Xeric Haplocambids | Cambisol * | [15,17] |
United States | Moscow-Pullman | Ultic Haploxerolls | Haplic Kastanozem | [15,17] |
United States | Corvalis | Ultic Argixerolls | Luvic Phaeozem | [15,17] |
United States | Sheridan | Ustic Haplargids | Luvic Xerosol | [32] |
United States | Kalispell | Typic Haplustolls | Haplic Chernozem | [35] |
United States | Huntley | Aridic Haplustalfs | Chromic Luvisol | [35] |
United States | Mocasin | Typic Calciustolls | Calcaric Phaeozem | [36] |
Soil | Without restriction | Chromic Luvisol–Haplic Kastanozem |
Mild restriction | Haplic Chernozem–Luvic Phaeozem–Vitric Andosol | |
Moderate restriction | Humic Andosol–Orthic Solonetz–Calcic Chernozem–Cambisol–Calcaric Phaeozem–Luvic Xerosol | |
Without information | All remaining soil types | |
Restriction | Glaciars (Gelisoles o Criosoles) |
Soil Uses | Unsuitable | Urban Areas–Forests–Wetlands–Bodies of Water–Snow and Glaciers–SNASPE–Agricultural Terrain |
Suitable | Grasslands and Shrublands–Areas without vegetation–Areas without information | |
Geomorphology | Unsuitable | Mountainous terrain–Steep slopes |
Suitable | Flat terrain–Mildly inclined | |
Altitude | Unsuitable | >1200 |
Suitable | <1200 |
Region | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Coquimbo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1668 | 0 | 0 | 1668 |
Valparaíso | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10,791 | 15,675 | 0 | 0 | 26,466 |
Metropolitana | 0 | 508 | 39 | 0 | 0 | 0 | 0 | 638 | 14 | 0 | 0 | 1199 |
O’Higgins | 0 | 167 | 749 | 0 | 0 | 0 | 0 | 4703 | 4597 | 0 | 0 | 10,216 |
Maule | 14 | 0 | 4402 | 0 | 621 | 0 | 186 | 1993 | 19,233 | 0 | 0 | 26,448 |
Biobío | 97 | 0 | 15 | 11,222 | 314 | 0 | 42,103 | 2343 | 40,293 | 1977 | 22,585 | 120,950 |
Araucanía | 0 | 0 | 0 | 27,869 | 921 | 0 | 1559 | 0 | 19,371 | 120,295 | 47,020 | 217,036 |
Los Ríos | 0 | 0 | 0 | 13,064 | 34,693 | 3 | 0 | 0 | 0 | 103,100 | 170,315 | 321,176 |
Los Lagos | 0 | 0 | 0 | 134,844 | 94,753 | 0 | 0 | 0 | 0 | 5397 | 513 | 235,507 |
Total | 111 | 676 | 5205 | 186,999 | 131,302 | 3 | 43,848 | 20,467 | 100,851 | 230,769 | 240,434 | 960,664 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Román-Figueroa, C.; Padilla, R.; Uribe, J.M.; Paneque, M. Land Suitability Assessment for Camelina (Camelina sativa L.) Development in Chile. Sustainability 2017, 9, 154. https://doi.org/10.3390/su9010154
Román-Figueroa C, Padilla R, Uribe JM, Paneque M. Land Suitability Assessment for Camelina (Camelina sativa L.) Development in Chile. Sustainability. 2017; 9(1):154. https://doi.org/10.3390/su9010154
Chicago/Turabian StyleRomán-Figueroa, Celián, Rodrigo Padilla, Juan Manuel Uribe, and Manuel Paneque. 2017. "Land Suitability Assessment for Camelina (Camelina sativa L.) Development in Chile" Sustainability 9, no. 1: 154. https://doi.org/10.3390/su9010154
APA StyleRomán-Figueroa, C., Padilla, R., Uribe, J. M., & Paneque, M. (2017). Land Suitability Assessment for Camelina (Camelina sativa L.) Development in Chile. Sustainability, 9(1), 154. https://doi.org/10.3390/su9010154