Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models
Abstract
:1. Introduction
2. Methodology and Data
2.1. Accounting of Carbon Emissions
2.2. STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) Model
2.3. Multicollinearity Diagnostics and Ridge Regression
2.4. Data Sources and Description
3. Results and Discussion
3.1. Features of Carbon Emissions from the Transport Sector
3.1.1. Macro-Level: Total Energy-Related Carbon Emissions
3.1.2. Micro-Level: Carbon Emissions Structure and Intensity
3.2. Multicollinearity Detection and Ridge Regression Analysis
4. Conclusions and Policy Suggestions
- (1)
- More attention should be placed on the promotion of clean and renewable energy in the transport sector. Diesel and gasoline are still the main energies used in the most recent period (especially diesel). Reducing the consumption of diesel is of great significance to creating low carbon transportation. Therefore, with Xinjiang’s unique geographical advantages and driven by the One Belt, One Road Initiative [6], cooperation with Central Asia in the energy field should be reinforced, thus increasing the consumption of natural gas, which emits less carbon.
- (2)
- Rigid regression results show that population size is one of the key factors driving Xinjiang’s traffic carbon emissions. Therefore, the natural population growth rate should be appropriately controlled. In addition, the flow of the population should be guided reasonably and effectively. Reasonable and orderly migration could effectively reduce the population’s moving distance and thereby reduce transport sector carbon emissions. Moreover, raising people’s awareness of low carbon travel could also be an important way to achieve low carbon transport.
- (3)
- The intensity of scientific and technological input into the energy utilization field should be strengthened, in order to improve the utilization efficiency of traditional energies. For instance, improving the utilization efficiency of diesel could effectively reduce the carbon emissions caused by the transport of bulk cargo in highway freight vehicles.
- (4)
- Efforts should be made to realize supply side reform, promote high-speed railway construction, increase railway network density and effectively reduce the proportion of high carbon-emission highway freight vehicles in Xinjiang. The government should increase investment in public transportation facilities and non-motorized transportation facilities as one means to reduce the excessive use of private vehicles.
- (5)
- Preferential policies should be implemented and promoted to encourage the use of hybrid energy motor vehicles. Specifically, appropriate financial subsidies should be given to buyers of hybrid motor vehicles in terms of purchase tax, fuel tax and use tax. Efforts should also be made to encourage people to purchase low-carbon and environmentally-friendly vehicles.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; Brunner, S.; Eickemeier, P.; et al. (Eds.) Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Available online: http://www.ipcc.ch/report/ar5/wg3/ (accessed on 25 May 2016).
- Lin, B.; Xie, C. Reduction potential of CO2 emissions in China’s transport industry. Renew. Sustain. Energy Rev. 2014, 33, 689–700. [Google Scholar] [CrossRef]
- Ju, J.; Wang, Q.; Liang, L.; Chen, X. International Carbon Trading: A Game Changer for Climate Change? Environ. Sci. Technol. 2014, 48, 14069. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.; Yang, D.; Zhang, W.; Wang, F.; Wang, G.; Fu, Q. Analysis of influencing factors of CO2 emissions in Xinjiang under the context of different policies. Environ. Sci. Policy 2015, 45, 20–29. [Google Scholar] [CrossRef]
- Statistics Bureau of Xinjiang Uygur Autonomous Region. Xinjiang Statistical Yearbook (1990–2014); China Statistics Press: Beijing, China, 2014.
- Tsao, R. One Belt One Road. Chinese American Forum 2015, 31, 11. [Google Scholar]
- Wang, C.; Zhang, X.; Wang, F.; Lei, J.; Zhang, L. Decomposition of energy-related carbon emissions in Xinjiang and relative mitigation policy recommendations. Front. Earth Sci. 2014, 9, 65–76. [Google Scholar] [CrossRef]
- Voigt, S.; Cian, E.D.; Schymura, M.; Verdolini, E. Energy intensity developments in 40 major economies: Structural change or technology improvement? Energy Econ. 2014, 41, 47–62. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C. The impacts of global oil price shocks on China’s fundamental industries. Energy Policy 2014, 68, 394–402. [Google Scholar] [CrossRef]
- Wang, Q. China has the capacity to lead in carbon trading. Nature 2013, 7432, 273. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, R. Drivers for energy consumption: A comparative analysis of China and India. Renew. Sustain. Energy Rev. 2016, 62, 954–962. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R.; Liao, H. Toward Decoupling: Growing GDP without Growing Carbon Emissions. Environ. Sci. Technol. 2016, 50, 11435–11436. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, Y. Energy saving and emission reduction revolutionizing China’s environmental protection. Renew. Sustain. Energy Rev. 2010, 14, 535–539. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R. Sino-Venezuelan oil-for-loan deal—The Chinese strategic gamble? Renew. Sustain. Energy Rev. 2016, 64, 817–822. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R. Impact of cheaper oil on economic system and climate change: A SWOT analysis. Renew. Sustain. Energy Rev. 2016, 54, 925–931. [Google Scholar] [CrossRef]
- Dong, J.-F.; Wang, Q.; Deng, C.; Wang, X.-M.; Zhang, X.-L. How to Move China toward a Green-Energy Economy: From a Sector Perspective. Sustainability 2016, 8, 337. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R. Cheaper Oil: A turning point in Paris climate talk? Renew. Sustain. Energy Rev. 2015, 52, 1186–1192. [Google Scholar] [CrossRef]
- Wang, Q. Cheaper Oil—Challenge and Opportunity for Climate Change. Environ. Sci. Technol. 2015, 49, 1997–1998. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, X.; Xu, Y.C. Pollution protests: Green issues are catching on in China. Nature 2012, 489, 502. [Google Scholar] [CrossRef] [PubMed]
- Scholl, L.; Schipper, L.; Kiang, N. CO2 emissions from passenger transport: A comparison of international trends from 1973 to 1992. Energy Policy 1996, 24, 17–30. [Google Scholar] [CrossRef]
- Greening, L.A.; Ting, M.; Davis, W.B. Decomposition of aggregate carbon intensity for freight: Trends from 10 OECD countries for the period 1971–1993. Energy Econ. 1999, 21, 331–361. [Google Scholar] [CrossRef]
- Saboori, B.; Sapri, M.; Baba, M. Economic growth, energy consumption and CO2 emissions in OECD (Organization for Economic Co-operation and Development)’s transport sector: A fully modified bi-directional relationship approach. Energy 2014, 66, 150–161. [Google Scholar] [CrossRef]
- Timilsina, G.R.; Shrestha, A. Transport sector CO2 emissions growth in Asia: Underlying factors and policy options. Energy Policy 2009, 37, 4523–4539. [Google Scholar] [CrossRef]
- Timilsina, G.R.; Shrestha, A. Factors affecting transport sector CO2 emissions growth in Latin American and Caribbean countries: An LMDI decomposition analysis. Int. J. Energy Res. 2009, 66, 396–414. [Google Scholar] [CrossRef]
- Chandran, V.G.R.; Tang, C.F. The impacts of transport energy consumption, foreign direct investment and income on CO2 emissions in ASEAN-5 economies. Renew. Sustain. Energy Rev. 2013, 24, 445–453. [Google Scholar] [CrossRef]
- Mazzarino, M. The economics of the greenhouse effect: Evaluating the climate change impact due to the transport sector in Italy. Energy Policy 2000, 28, 957–966. [Google Scholar] [CrossRef]
- Lakshmanan, T.R.; Han, X. Factors underlying transportation CO2 emissions in the U.S.A.: A decomposition analysis. Transport. Res. D Transp. Environ. 1997, 2, 1–15. [Google Scholar] [CrossRef]
- McKinnon, A.C.; Piecyk, M.I. Measurement of CO2 emissions from road freight transport: A review of UK experience. Energy Policy 2009, 37, 3733–3742. [Google Scholar] [CrossRef]
- Ratanavaraha, V.; Jomnonkwao, S. Trends in Thailand CO2 emissions in the transportation sector and Policy Mitigation. Transp. Policy 2015, 41, 136–146. [Google Scholar] [CrossRef]
- Stelling, P. Policy instruments for reducing CO2-emissions from the Swedish freight transport sector. Res. Transp. Bus. Manag. 2014, 12, 47–54. [Google Scholar] [CrossRef]
- Johansson, B. Will restrictions on CO2 emissions require reductions in transport demand? Energy Policy 2009, 37, 3212–3220. [Google Scholar] [CrossRef]
- Lu, I.J.; Lewis, C.; Lin, S.J. The forecast of motor vehicle, energy demand and CO2 emission from Taiwan’s road transportation sector. Energy Policy 2009, 37, 2952–2961. [Google Scholar] [CrossRef]
- Yin, X.; Chen, W.; Eom, J.; Clarke, L.E.; Kim, S.H.; Patel, P.L.; Yu, S. China’s transportation energy consumption and CO2 emissions from a global perspective. Energy Policy 2015, 82, 233–248. [Google Scholar] [CrossRef]
- Yang, W.; Li, T.; Cao, X. Examining the impacts of socio-economic factors, urban form and transportation development on CO2 emissions from transportation in China: A panel data analysis of China’s provinces. Habitat Int. 2015, 49, 212–220. [Google Scholar] [CrossRef]
- Dai, Y.; Gao, H.O. Energy consumption in China’s logistics industry: A decomposition analysis using the LMDI approach. Transport. Res. D Transp. Environ. 2016, 46, 69–80. [Google Scholar] [CrossRef]
- Wang, Q. Effective policies for renewable energy—The example of China’s wind power—lessons for China’s photovoltaic power. Renew. Sustain. Energy Rev. 2010, 14, 702–712. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R. Journey to burning half of global coal: Trajectory and drivers of China’s coal use. Renew. Sustain. Energy Rev. 2016, 58, 341–346. [Google Scholar] [CrossRef]
- Zhang, C.; Nian, J. Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China. Energy Policy 2013, 63, 918–926. [Google Scholar] [CrossRef]
- Liu, J. Energy saving potential and carbon emissions prediction for the transportation sector in China. Res. Sci. 2011, 33, 640–646. (In Chinese) [Google Scholar]
- Wang, W.; Zhang, M.; Zhou, M. Using LMDI method to analyze transport sector CO2 emissions in China. Energy 2011, 36, 5909–5915. [Google Scholar] [CrossRef]
- Cai, B.; Yang, W.; Cao, D.; Liu, L.; Zhou, Y.; Zhang, Z. Estimates of China’s national and regional transport sector CO2 emissions in 2007. Energy Policy 2012, 41, 474–483. [Google Scholar] [CrossRef]
- Mao, X.; Yang, S.; Liu, Q.; Tu, J.; Jaccard, M. Achieving CO2 emission reduction and the co-benefits of local air pollution abatement in the transportation sector of China. Environ. Sci. Policy 2012, 21, 1–13. [Google Scholar] [CrossRef]
- Wei, Q.; Zhao, S.; Xiao, W. A quantitative qnalysis of carbon emissions reduction ability of transportation structure optimization in China. J. Transp. Eng. Inf. Technol. 2013, 13, 10–17. [Google Scholar]
- Guo, B.; Geng, Y.; Franke, B.; Hao, H.; Liu, Y.; Chiu, A. Uncovering China’s transport CO2 emission patterns at the regional level. Energy Policy 2014, 74, 134–146. [Google Scholar] [CrossRef]
- Liu, Z.; Li, L.; Zhang, Y. Investigating the CO2 emission differences among China’s transport sectors and their influencing factors. Nat. Hazards 2015, 77, 1323–1343. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Carbon dioxide emissions reduction in China’s transport sector: A dynamic VAR (vector autoregression) approach. Energy 2015, 83, 486–495. [Google Scholar] [CrossRef]
- Ma, J.; Heppenstall, A.; Harland, K.; Mitchell, G. Synthesising carbon emission for mega-cities: A static spatial microsimulation of transport CO2 from urban travel in Beijing. Comput. Environ. Urban 2014, 45, 78–88. [Google Scholar] [CrossRef]
- Liu, X.; Ma, S.; Tian, J.; Jia, N.; Li, G. A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing. Energy Policy 2015, 85, 253–270. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Wang, Q.; Yang, D.; Li, L.; Zhang, X. Preparing for Myanmar’s environment-friendly reform. Environ. Sci. Policy 2013, 25, 229–233. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Y. Barriers and opportunities of using the clean development mechanism to advance renewable energy development in China. Renew. Sustain. Energy Rev. 2010, 14, 1989–1998. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Factors affecting carbon dioxide (CO2) emissions in China’s transport sector: A dynamic nonparametric additive regression model. J. Clean. Prod. 2015, 101, 311–322. [Google Scholar] [CrossRef]
- Shahbaz, M.; Tiwari, A.K.; Nasir, M. The effects of financial development, economic growth, coal consumption and trade openness on CO2 emissions in South Africa. Energy Policy 2013, 61, 1452–1459. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Chen, X.; Jha, A.N.; Rogers, H. Natural gas from shale formation—The evolution, evidences and challenges of shale gas revolution in United States. Renew. Sustain. Energy Rev. 2014, 30, 1–28. [Google Scholar] [CrossRef]
- Shahbaz, M.; Loganathan, N.; Muzaffar, A.T.; Ahmed, K.; Ali Jabran, M. How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model. Renew. Sustain. Energy Rev. 2016, 57, 83–93. [Google Scholar] [CrossRef]
- Tan, X.; Dong, L.; Chen, D.; Gu, B.; Zeng, Y. China’s regional CO2 emissions reduction potential: A study of Chongqing city. Appl. Energy 2016, 162, 1345–1354. [Google Scholar] [CrossRef]
- IPCC. International Panel on Climate Change (IPCC)’s Task Force on National Greenhouse Gas Inventories (TFI). IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_3_Ch3_Mobile_Combustion.pdf (accessed on 15 June 2016).
- Wang, C.; Xie, H. Analysis on dynamic characteristics and influencing factors of carbon emissions from electricity in China. China Pop. Res. Environ. 2015, 25, 21–27. (In Chinese) [Google Scholar]
- Li, X.; Wang, H.; Chen, Z.; Liu, Q.; Yu, X. Inter-provincial discrepancy and spatiotemporal characteristics of carbon dioxide emission intensity from power energy consumption in China. J. Arid Land Res. Environ. 2015, 29, 43–47. (In Chinese) [Google Scholar]
- National Bureau of Statistics, China. China Statistical Yearbook (1990–2013); China Statistics Press: Beijing, China, 2014.
- Song, R.; Yang, S.; Sun, M. GHG Protocol Tool for Energy Consumption in China (Version 2.1); World Resources Institute (WRI): Washington, DC, USA, 2013. [Google Scholar]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, P.R.; Holdren, J.P. Impact of population growth. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- García, C.B.; García, J.; Martín, M.M.L.; Salmerón, R. Collinearity: Revisiting the variance inflation factor in ridge regression. J. Appl. Stat. 2015, 42, 648–661. [Google Scholar] [CrossRef]
- Alkhamisi, M.A.; Macneill, I.B. Recent results in ridge regression methods. Metron 2015, 73, 359–376. [Google Scholar] [CrossRef]
- García, J.; Salmerón, R.; García, C.; Martín, M.D.M.L. Standardization of Variables and Collinearity Diagnostic in Ridge Regression. Int. Stat. Rev. 2015, 84, 245–266. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 2000, 42, 80–86. [Google Scholar] [CrossRef]
- Inman, J.R. Resistivity Inversion with Ridge Regression. Geophysics 2012, 40, 798–817. [Google Scholar] [CrossRef]
- Statistics Bureau of Xinjiang Province. 50 Years of Glories of Xinjiang (1949–1999); Xinjiang People’s Press: Urumuqi, China, 2000.
- The Institute of Contemporary China Studies. The History of the People’s Republic of China. Available online: http://www.hprc.org.cn/wxzl/wxysl/wnjj/ (accessed on 15 June 2016).
- Departmeng of Energy Statistics, National Bureau of Statistics. China Energy Statistical Yearbook (1990–2014); China Statistics Press: Beijing, China, 2014.
- Wang, Z.; Yang, L. Delinking indicators on regional industry development and carbon emissions: Beijing–Tianjin–Hebei economic band case. Ecol. Indic. 2015, 48, 41–48. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X. Energy policies for managing China’s carbon emission. Renew. Sustain. Energy Rev. 2015, 50, 470–479. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R. Natural gas from shale formation: A research profile. Renew. Sustain. Energy Rev. 2016, 57, 1–6. [Google Scholar] [CrossRef]
- Wang, Q. China should aim for a total cap on emissions. Nature 2014, 512, 115. [Google Scholar] [CrossRef] [PubMed]
- Kock, N.; Lynn, G. Lateral Collinearity and Misleading Results in Variance-Based SEM: An Illustration and Recommendations. J. Assoc. Inf. Syst. 2012, 13, 546–580. [Google Scholar]
- O’Brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Nie, J. China’s one-child policy, a policy without a future. Pitfalls of the “common good” argument and the authoritarian model. Camb. Q. Healthc. Ethics 2014, 23, 272–287. [Google Scholar] [CrossRef] [PubMed]
Fuel Type | Coal | Coke | Crude Oil | Gasoline | Kerosene | Diesel Oil | Fuel Oil | Natural Gas |
---|---|---|---|---|---|---|---|---|
Low calorific value (TJ/103 t or TJ/104 m3) [59] | 20.908 | 28.435 | 41.816 | 43.070 | 43.070 | 42.652 | 41.816 | 38.93 |
Potential carbon content (kg C/GJ) [60] | 26.37 | 29.5 | 20.1 | 18.9 | 19.6 | 20.2 | 21.1 | 15.3 |
Oxidation rate [60] | 0.98 | 0.93 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.99 |
Year | Total Carbon Emissions (104 t) | Value Added Output (104 Yuan) | Emission Intensity (t/104 Yuan) | Year | Total Carbon Emissions (104 t) | Value Added Output (104 Yuan) | Emission Intensity (t/104 Yuan) |
---|---|---|---|---|---|---|---|
1989 | 199.26 | 12.90 | 15.45 | 2001 | 535.29 | 148.38 | 3.61 |
1990 | 225.94 | 14.63 | 15.44 | 2002 | 496.71 | 168.58 | 2.95 |
1991 | 233.82 | 22.63 | 10.33 | 2003 | 572.34 | 159.43 | 3.59 |
1992 | 266.79 | 28.32 | 9.42 | 2004 | 596.08 | 186.70 | 3.87 |
1993 | 234.29 | 32.58 | 7.19 | 2005 | 800.98 | 149.61 | 5.35 |
1994 | 304.22 | 44.40 | 6.85 | 2006 | 934.27 | 165.60 | 5.64 |
1995 | 317.89 | 59.63 | 5.33 | 2007 | 936.43 | 177.28 | 5.28 |
1996 | 366.69 | 73.74 | 4.97 | 2008 | 1243.52 | 191.84 | 6.48 |
1997 | 368.48 | 85.70 | 4.30 | 2009 | 1204.18 | 209.10 | 5.76 |
1998 | 394.47 | 106.87 | 3.69 | 2010 | 1249.61 | 222.47 | 5.62 |
1999 | 372.73 | 129.60 | 2.88 | 2011 | 1313.75 | 256.72 | 5.12 |
2000 | 412.93 | 148.63 | 2.78 | 2012 | 1653.05 | 357.90 | 4.62 |
Variables | Parameters | Standard Error | t Statistics | p-Value | Variance Inflation Factor (VIF) |
---|---|---|---|---|---|
Constant | −17.152 | 6.546 | −2.620 | 0.017 ** | — |
lnP | 2.411 | 0.853 | 2.837 | 0.011 ** | 56.437 |
lnA | 0.498 | 0.237 | 2.101 | 0.050 * | 34.681 |
lnT | 0.293 | 0.065 | 4.490 | 0.000 *** | 4.649 |
lnCT | 0.105 | 0.269 | 0.391 | 0.700 | 155.264 |
lnPC | 0.095 | 0.159 | 0.601 | 0.556 | 226.711 |
Variables | Parameters | Standard Error | Standardized Coefficients | t Statistics | p-Value |
---|---|---|---|---|---|
Constant | −12.504 | 2.207 | 0.000 | −5.665 | 0.000 *** |
P | 1.777 | 0.344 | 0.358 | 5.159 | 0.000 *** |
A | 0.416 | 0.127 | 0.236 | 3.284 | 0.004 *** |
T | 0.261 | 0.038 | 0.197 | 6.831 | 0.000 *** |
CT | 0.224 | 0.055 | 0.237 | 4.061 | 0.001 *** |
PC | 0.110 | 0.024 | 0.238 | 4.558 | 0.000 *** |
Adjusted R2 = 0.987 | F statistics = 360.31 | Significance (F statistics) = 0.000 *** |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Deng, C.; Li, R.; Huang, J. Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models. Sustainability 2017, 9, 24. https://doi.org/10.3390/su9010024
Dong J, Deng C, Li R, Huang J. Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models. Sustainability. 2017; 9(1):24. https://doi.org/10.3390/su9010024
Chicago/Turabian StyleDong, Jiefang, Chun Deng, Rongrong Li, and Jieyu Huang. 2017. "Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models" Sustainability 9, no. 1: 24. https://doi.org/10.3390/su9010024
APA StyleDong, J., Deng, C., Li, R., & Huang, J. (2017). Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models. Sustainability, 9(1), 24. https://doi.org/10.3390/su9010024