Environmental Impact and Nutritional Improvement of Elevated CO2 Treatment: A Case Study of Spinach Production
Abstract
:1. Introduction
2. Materials and Method
2.1. Incubator-Scale Cultivation of Spinacia oleracea
2.2. Measurement of Weight and Vitamin C
2.3. Life Cycle Assessment (LCA)
2.4. Eco-Efficiency Score
3. Results
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Notarnicola, B.; Salomone, R.; Petti, L.; Renzulli, P.A.; Roma, R.; Cerutti, A.K. Life cycle assessment in the agri-food sector. In Life Cycle Assessment in the Agri-food Sector: System Studies, Methodological Issues and Best Practices; Springer: New York, NY, USA, 2015; pp. 10–68. [Google Scholar]
- Dalgaard, R.; Schmidt, J.; Halberg, N.; Christensen, P.; Thrane, M.; Pengue, W.A. LCA of soybean meal. Int. J. Life Cycle Assess. 2008, 13, 240. [Google Scholar] [CrossRef]
- De Backer, E.; Aertsens, J.; Vergucht, S.; Steurbaut, W. Assessing the ecological soundness of organic and conventional agriculture by means of life cycle assessment (LCA) A system study of leek production. Br. Food J. 2009, 111, 1028–1061. [Google Scholar] [CrossRef] [Green Version]
- Hunsager, E.A.; Bach, M.; Breuer, L. An institutional analysis of EPD programs and a global PCR registry. Int. J. Life Cycle Assess. 2014, 19, 786–795. [Google Scholar] [CrossRef]
- Bergman, R.; Taylor, A. EPD-Environmental Product Declarations for Wood Products—An Application of Life Cycle Information about Forest Products. For. Prod. J. 2011, 61, 192–201. [Google Scholar] [CrossRef]
- Pelletier, N.; Arsenault, N.; Tyedmers, P. Scenario modeling potential eco-efficiency gains from a transition to organic agriculture: Life cycle perspectives on Canadian canola, corn, soy, and wheat production. Environ. Manag. 2008, 42, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Basset-Mens, C.; Ledgard, S.; Boyes, M. Eco-efficiency of intensification scenarios for milk production in New Zealand. Ecol. Econ. 2009, 68, 1615–1625. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Bindraban, P.S.; Asseng, S.; Meinke, H.; Dixon, J. Eco-efficient agriculture: Concepts, challenges, and opportunities. Crop Sci. 2010, 50 (Suppl. 1), S-109–S-119. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Forestry and Fisheries (MAFF), Changing Horticulture, August 2017. Available online: http://www.maff.go.jp/j/seisan/ryutu/engei/sisetsu/pdf/jyousei_all.pdf (accessed on 15 September 2017).
- Reich, P.B.; Knops, J.; Tilman, D.; Craine, J. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 2001, 410, 809. [Google Scholar] [CrossRef] [PubMed]
- Tissue, D.T.; Thomas, R.B.; Strain, B.R. Long-term effects of elevated CO2 and nutrients on photosynthesis and rubisco in loblolly pine seedlings. Plant Cell Environ. 1993, 16, 859–865. [Google Scholar] [CrossRef]
- Arp, W.J. Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ. 1991, 14, 869–875. [Google Scholar] [CrossRef]
- Sage, R.F.; Sharkey, T.D.; Seemann, J.R. Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiol. 1989, 89, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Bowes, G. Growth at elevated CO2: Photosynthetic responses mediated through Rubisco. Plant Cell Environ. 1991, 14, 795–806. [Google Scholar] [CrossRef]
- Poorter, H. Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. In CO2 and Biosphere; Springer: Houten, The Netherlands, 1993; pp. 77–98. [Google Scholar]
- Osuga, T. Carbon dioxide control. In Protected Horticulture Handbook; Japan Greenhouse Horticulture Association: Tokyo, Japan, 2003; pp. 170–181. [Google Scholar]
- Ibaraki Prefectural Agricultural Research Center. Effect of Carbon Dioxide Application on Low Concentration Control in Tomato Cultivation in Winter. 2010. Available online: https://www.pref.ibaraki.jp/nourinsuisan/enken/seika/yasai/tomato/documents/s2223.pdf (accessed on 21 August 2017).
- Aichi Prefecture Agricultural Comprehensive Experiment Station. CO2 Application Technology of Rose Cultivation by Environment Control; New Technology of Agriculture: Aichi, Japan, 2015; p. 107. [Google Scholar]
- Zen-Noh. Effectiveness of Carbon Dioxide Application in Facility Gardening; Green Report; Zen-Noh: Tokyo, Japan, 2016; p. 568. [Google Scholar]
- Ministry of Agriculture, Forestry and Fisheries (MAFF). Outline of New Policy toward Realization of Offensive Agriculture, Forestry and Fishery Industry: 2nd ed. 2008. Available online: http://www.maff.go.jp/j/pr/annual/pdf/semep_kaitei2.pdf (accessed on 11 August 2017).
- Klöpffer, W. The critical review of life cycle assessment studies according to ISO 14040 and 14044. Int. J. Life Cycle Assess. 2012, 17, 1087–1093. [Google Scholar] [CrossRef]
- Ministry of Economy, Trade and Industry (METI) Guidelines for Calculating CO2 Emissions in the Field of Logistics. 2007. Available online: http://www.greenpartnership.jp/pdf/CO2/CO2brochure.pdf (accessed on 8 January 2016).
- Ministry of Land, Infrastructure, Transport and Tourism (MLIT) Road-Traffic Census—General Traffic Calculation Result Summary Table. 2010. Available online: http://www.mlit.go.jp/road/census/h22–1/ (accessed on 8 January 2016).
- Nishizono, H.; Motegi, Y. Study of environment evaluation by LCA method on production and distribution of vegetables. Ann. Rep. Faculty Educ. Gunma Univ. 2007, 42, 145–157. [Google Scholar]
- HOSHIZAKI Corporation. HR-63ZT Product Information. 2010. Available online: http://www.hoshizaki.co.jp/p/f-refrigerator/z-series/refrigerator/hr-63zt.html (accessed on 8 January 2016).
- Ministry of Agriculture, Forestry and Fisheries (MAFF). Minister’s Office Environmental Policy Division General Accounting; Database Maintenance. Available online: http://www.maff.go.jp/j/budget/yosan_kansi/sikkou/tokutei_keihi/seika_h23/kanbou_kankyou_ippan/pdf/60100227_03.pdf (accessed on 10 January 2016).
- Watanabe, Y.; Dowaki, K. Proposal of the index of environmental burden and health information. In Proceedings of the 12th Conference on Institute of Life Cycle Assessment, Tokyo, Japan, 7–9 March 2018. [Google Scholar]
- Ide, K.; Dowaki, K.; Kitahata, N. Improvement of vegetable productivity and LCA analysis using carbon-carbon CO2 for low carbon agriculture method. In Proceedings of the 12th Conference on Institute of Life Cycle Assessment, Tokyo, Japan, 7–9 March 2018. [Google Scholar]
- Berthoud, A.; Maupu, P.; Huet, C.; Poupart, A. Assessing freshwater ecotoxicity of agricultural products in life cycle assessment (LCA): A system study of wheat using French agricultural practices databases and USEtox model. Int. J. Life Cycle Assess. 2011, 16, 841. [Google Scholar] [CrossRef]
- Margni, M.; Rossier, D.; Crettaz, P.; Jolliet, O. Life cycle impact assessment of pesticides on human health and ecosystems. Agric. Ecosyst. Environ. 2002, 93, 379–392. [Google Scholar] [CrossRef]
- Hoshi, T.; Okano, T.; Kosakai, K.; Terazoe, S. Development of high productive technology for vegetables. (3). Cultivation on some vegetables in a test plant. Ann. Rep. Abiko Res. Inst. Electr. Power Ind. 1988, U88008, 44. [Google Scholar]
- Kubo, Y.; Inaba, A.; Nakamura, R. Respiration and C2H4 production in various harvested crops held in CO2-enriched atmospheres. J. Am. Soc. Hortic. Sci. 1990, 115, 975–978. [Google Scholar]
- Kubo, Y.; Inaba, A.; Nakamura, R. Effects of high CO2 on respiration in various horticultural crops. J. Jpn. Soc. Hortic. Sci. 1989, 58, 731–736. [Google Scholar] [CrossRef]
- Wang, C.Y. Effect of short-term high CO2 treatment on the market quality of stored broccoli. J. Food Sci. 1979, 44, 1478–1482. [Google Scholar] [CrossRef]
- Harley, P.C.; Thomas, R.B.; Reynolds, J.F.; Strain, B.R. Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ. 1992, 15, 271–282. [Google Scholar] [CrossRef]
- Kawashima, N. Present Situation and Problems of CO2 Enrichment in a Greenhouse. J. Agrc. Met. 1991, 47, 177–182. [Google Scholar] [CrossRef]
- Nakagawa, I.; Yoshioka, H.; Kawada, M.; Nishimura, K. 1991: CO2 application on the growth of spinach, cub, and cinnamon. Misc. Publ. NARO West. Region Agric. Res. Cent. 1991, 81, 30–34. [Google Scholar]
- Nakano, A.; Ahn, D. CO2 application technology for facility production adapted to low-carbon society. Agric. Hortic. 2010, 85, 1071–1079. [Google Scholar]
- Nakano, A.; Yasuba, K.; Sasaki, H.; Johkan, M.; Suzuki, K.; Takaichi, M. Estimation of the amount of residual toxic residue from large-scale tomato plant production and various properties of the compost. Bull. Natl. Inst. Veg. Tea Res. 2010, 9, 197–204. [Google Scholar]
- Dowaki, K.; Ohta, T.; Kasahara, Y.; Kameyama, M.; Sakawaki, K.; Mori, S. An economic and energy analysis on bio-hydrogen fuel using a gasification process. Renew. Energy 2007, 32, 80–90. [Google Scholar] [CrossRef]
- Kameyama, M.; Ogura, S.; Kamiuchi, H.; Dowaki, K. Performance evaluation of 1t/d scale plant through Blue Tower gasification process. J. Jpn. Soc. Energy Resour. 2010, 31, 43–50. [Google Scholar]
- Nagaishi, T.; Ide, K.; Kameyama, M.; Dowaki, K. Life cycle assessment of hydrogen purification by pressure swing adsorption in consideration of CO2 fertilization. In Proceedings of the 12th Conference on Institute of Life Cycle Assessment, Tokyo, Japan, 7–9 March 2018. [Google Scholar]
Conventional System | Elevated CO2 Treatment System | |
---|---|---|
Temperature (°C) | 22 | 22 |
Humidity (%) | 50 | 50 |
Lighting (%) | 60 | 60 |
CO2 concentration (ppm) | 400 | 1000 |
Lighting time (h) | 16 | 16 |
Spinach Life Cycle Inputs | ||||||||
Unit | Use (per 10 a) | CO2 emissions (kg CO2 per unit) | ||||||
Organic fertilizer | kg | N | P | K | N | P | K | |
24.0 | 19.8 | 16.9 | 1.15 | 0.86 | 0.15 | Adapted from [24] | ||
Fuel | L | 2.5 | 2.7 | Fuel use adapted from [22] | ||||
Transport | ||||||||
Unit | Use (per one way) | CO2 emissions (kg CO2 per unit) | ||||||
Truck transport | L | 5.86 | 2.32 | Fuel efficiency [20]; Average speed adapted from [21] | ||||
Distribution Center | ||||||||
Unit | Use (per day) | CO2 emissions (kg CO2 per unit) | ||||||
Electricity | kWh | 0.9 | 0.5 | Electricity use adapted from [23] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, Y.; Ide, K.; Kitahata, N.; Kuchitsu, K.; Dowaki, K. Environmental Impact and Nutritional Improvement of Elevated CO2 Treatment: A Case Study of Spinach Production. Sustainability 2017, 9, 1854. https://doi.org/10.3390/su9101854
Seo Y, Ide K, Kitahata N, Kuchitsu K, Dowaki K. Environmental Impact and Nutritional Improvement of Elevated CO2 Treatment: A Case Study of Spinach Production. Sustainability. 2017; 9(10):1854. https://doi.org/10.3390/su9101854
Chicago/Turabian StyleSeo, Yuna, Keisuke Ide, Nobutaka Kitahata, Kazuyuki Kuchitsu, and Kiyoshi Dowaki. 2017. "Environmental Impact and Nutritional Improvement of Elevated CO2 Treatment: A Case Study of Spinach Production" Sustainability 9, no. 10: 1854. https://doi.org/10.3390/su9101854
APA StyleSeo, Y., Ide, K., Kitahata, N., Kuchitsu, K., & Dowaki, K. (2017). Environmental Impact and Nutritional Improvement of Elevated CO2 Treatment: A Case Study of Spinach Production. Sustainability, 9(10), 1854. https://doi.org/10.3390/su9101854