Energy Sustainability Evaluation Model Based on the Matter-Element Extension Method: A Case Study of Shandong Province, China
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Energy Sustainability Evaluation Index System
3.2. Weight Determination by the Variation Coefficient Method
3.3. Matter-Element Extension Model
3.3.1. Determination of Classical Domain, Joint Domain, and the Matter-Element to Be Evaluated
3.3.2. Determination of the Critical Values of Joint Domain Matter-Element and Classical Domain Matter-Element
3.3.3. Data Correlation Calculation and Grade Judgment
4. Results
4.1. Application Example
4.2. Evaluation Process
- Step 1
- Establish classical domain
- Step 2
- Establish joint domain
- Step 3
- Establish the matter-element to be evaluated
- Step 4
- Calculate the correlation and evaluation results
4.3. Analysis on Evaluation Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chester, L. Conceptualising energy security and making explicit its polysemic nature. Energy Policy 2010, 38, 887–895. [Google Scholar] [CrossRef]
- Winzer, C. Conceptualizing energy security. Energy Policy 2012, 46, 36–48. [Google Scholar] [CrossRef]
- Kruyt, B.; Vuuren, D.P.V.; Vries, H.J.M.D.; Groenenberg, H. Indicators for energy security. Energy Policy 2009, 37, 2166–2181. [Google Scholar] [CrossRef]
- Maull, H. Raw Materials, Energy and Western Security; Palgrave Macmillan: Basingstoke, UK, 1984. [Google Scholar]
- Bohi, D.R.; Toman, M.A. The Economics of Energy Security; Springer: Amsterdam, The Netherlands, 1996; pp. 425–452. [Google Scholar]
- Sovacool, B.K.; Brown, M.A. Competing Dimensions of Energy Security: An International Perspective. Annu. Rev. Environ. Resour. 2009, 35, 77–108. [Google Scholar] [CrossRef]
- Awerbuch, S. Portfolio-Based Electricity Generation Planning: Policy Implications For Renewables And Energy Security. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 693–710. [Google Scholar] [CrossRef]
- Markandya, A.; Pemberton, M. Energy security, energy modelling and uncertainty. Energy Policy 2010, 38, 1609–1613. [Google Scholar] [CrossRef]
- Hughes, L. The four ‘R's of energy security. Energy Policy 2009, 37, 2459–2461. [Google Scholar] [CrossRef]
- Leung, G.C.K. China’s energy security: Perception and reality. Energy Policy 2011, 39, 1330–1337. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X. China’s electricity market-oriented reform: From an absolute to a relative monopoly. Energy Policy 2012, 51, 143–148. [Google Scholar] [CrossRef]
- Shandong, S.B.O. Statistical Yearbook of Shandong; China Statistics Press: Beijing, China, 2016.
- Lefevremarton, N.; Blyth, W. Energy Security and Climate Change Policy Interactions—An Assessment Framework. Oil Gas Energy Law J. 2005, 3, 17–46. [Google Scholar]
- Cohen, G.; Joutz, F.; Loungani, P. Measuring energy security: Trends in the diversification of oil and natural gas supplies. Energy Policy 2011, 39, 4860–4869. [Google Scholar] [CrossRef]
- Salameh, M.G. The new frontiers for the United States energy security in the 21st century. Appl. Energy 2003, 76, 135–144. [Google Scholar] [CrossRef]
- Jansen, J.C. Desinging Indicators of Long-Term Energy Supply Security; Energy research Centre of The Netherlands: LE Petten, The Netherlands, 2004. [Google Scholar]
- Willrich, M. Energy and World Politics; Simon and Schuster: New York, NY, USA, 1975. [Google Scholar]
- Wang, Q.; Chen, X. Energy policies for managing China’s carbon emission. Renew. Sustain. Energy Rev. 2015, 50, 470–479. [Google Scholar] [CrossRef]
- Sinton, J.E.; Fridley, D.G. ‘What Goes Up: Recent Trends in China's Energy Consumption’. Energy Policy 2000, 28, 671–687. [Google Scholar] [CrossRef]
- Iaea, V.E.; Iea, P.E. Energy indicators for sustainable development: Guidelines and methodologies. Science 2005, 195, 968. [Google Scholar]
- Liu, L.; Lei, S.; Gao, T.; Liu, X. Evaluation and Spatial-temporal Evolution of Energy Security in China. Acta Geogr. Sin. 2012, 67, 1634–1644. [Google Scholar]
- Hu, J.; Wu, H.; Hu, X. Construction of energy security evaluation index system based on PSR model in China. Stat. Decis. 2016, 8, 62–64. [Google Scholar]
- Wang, Q.; Li, R. Decline in China’s coal consumption: An evidence of peak coal or a temporary blip? Energy Policy 2017, 108, 696–701. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, X.-T.; Li, R. Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China. Energy 2017, 127, 78–88. [Google Scholar] [CrossRef]
- Kohsaka, R. Developing biodiversity indicators for cities: Applying the DPSIR model to Nagoya and integrating social and ecological aspects. Ecol. Res. 2010, 25, 925–936. [Google Scholar] [CrossRef]
- Muriana, C.; Vizzini, G. Project risk management: A deterministic quantitative technique for assessment and mitigation. Int. J. Proj. Manag. 2017, 35, 320–340. [Google Scholar] [CrossRef]
- Liu, D.; Liang, Z.; Zhao, W.; Liu, X.; Yi, Z. Application of TOPSIS objective weighting method in drought comprehensive evaluation. Int. J. Hydroelectr. Energy 2011, 29, 8–10. [Google Scholar]
- Ma, H. Objective weighting method in comprehensive evaluation system. CO-Operativecon. Sci. 2009, 17, 50–51. [Google Scholar]
- Zhao, H.; Ma, L.; Jia, Q. Grey relational analysis model based on coefficient of variation method and its application. Heilongjiang Sci. Technol. Water Conserv. 2007, 35, 26–27. [Google Scholar]
- Ng, D.K.W.; Cai, W. Treating non-compatibility problem from matter element analysis to extenics. ACM SIGICE Bull. 1997, 22, 2–9. [Google Scholar] [CrossRef]
- Zhou, Y.; Hao, L.; Liu, W. Extenics-based Study on Evaluation of Urban Community Home-care Service for the Elderly. Proced. Comput. Sci. 2016, 91, 576–580. [Google Scholar] [CrossRef]
- Zhao, B.; Xu, W.Y.; Liang, G.L.; Meng, Y.D. Stability evaluation model for high rock slope based on element extension theory. Bull. Eng. Geol. Environ. 2015, 74, 301–314. [Google Scholar] [CrossRef]
- Jia, C.; Xu, X.; Zhang, Y.; Han, J. Susceptibility area regionalization of land subsidence based on extenics theory. Clust. Comput. 2017, 20, 53–66. [Google Scholar] [CrossRef]
- Chen, Z.; Lei, X. Energy security evaluation model based on entropy weight extension method in China. Syst. Eng. 2015, 7, 153–158. [Google Scholar]
- Zhang, C.; Zhang, J.; Li, C.; Wang, S. Method for determining classical domain in extension pattern recognition algorithm. J. Nav. Aeronaut. Eng. Inst. 2015, 1, 87–90. [Google Scholar]
Index | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
2011 | 5.40 | 10.9 | 0.1994 | 0.62 | 0.86 | 1.26 |
2012 | 4.95 | 9.8 | 0.2106 | 0.48 | 0.82 | 1.16 |
2013 | 5.01 | 9.6 | 0.2255 | 0.50 | 0.78 | 1.07 |
2014 | 7.39 | 8.7 | 0.2342 | 0.38 | 0.74 | 0.99 |
2015 (evaluating year) | 5.88 | 8.0 | 0.2424 | 0.50 | 0.71 | 0.91 |
Index | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
2011 | 0.8156 | 1 | 1 | 0 | 0 | 0 |
2012 | 1 | 0.5 | 0.6782 | 0.5833 | 0.3333 | 0.3704 |
2013 | 0.9754 | 0.4091 | 0.25 | 0.50 | 0.6667 | 0.7037 |
2014 | 0 | 0 | 0 | 1 | 1 | 1 |
weights | W1 = 0.1370 | W2 = 0.1742 | W3 = 0.1867 | W4 = 0.1595 | W5 = 0.1742 | W6 = 0.1682 |
N1 | N2 | N3 | N4 | N5 | Np | |
---|---|---|---|---|---|---|
C1 | (0, 5.064) | (5.064, 5.79) | (5.79, 6.516) | (6.516, 7.242) | (7.242, 7.968) | (0, 7.968) |
C2 | (10.9, 10.239) | (10.239, 9.4095) | (9.4095, 8.58) | (8.58, 7.7505) | (7.7505, 6.921) | (6.921, 10.9) |
C3 | (0, 0.2091) | (0.2091, 0.2224) | (0.2224, 0.2357) | (0.2357, 0.2491) | (0.2491, 0.2624) | (0, 0.2624) |
C4 | (0, 0.424) | (0.424, 0.496) | (0.496, 0.568) | (0.568, 0.64) | (0.64, 0.712) | (0, 0.712) |
C5 | (0, 0.738) | (0.738, 0.783) | (0.783, 0.828) | (0.828, 0.873) | (0.873, 0.918) | (0, 0.918) |
C6 | (0, 0.974) | (0.974, 1.08) | (1.08, 1.186) | (1.186, 1.292) | (1.292, 1.398) | (0, 1.398) |
Index | K1(Vi) | K2(Vi) | K3(Vi) | K4(Vi) | K5(Vi) | Evaluation Results |
---|---|---|---|---|---|---|
C1 | −0.2810 | −0.0413 | 0.1240 | −0.2335 | −0.3948 | III |
C2 | −0.7288 | −0.6748 | −0.5664 | −0.6992 | −0.5000 | V |
C3 | −0.6251 | −0.5001 | −0.2501 | 0.4997 | −0.2499 | IV |
C4 | −0.2639 | −0.0185 | 0.0556 | −0.2429 | −0.3977 | III |
C5 | 0.2818 | −0.1186 | −0.2598 | −0.3620 | −0.4394 | I |
C6 | 0.0657 | −0.1159 | −0.2584 | −0.3613 | −0.4391 | I |
Kj(V) | −0.2641 | −0.2597 | −0.2082 | −0.2231 | −0.4017 | III |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Li, R. Energy Sustainability Evaluation Model Based on the Matter-Element Extension Method: A Case Study of Shandong Province, China. Sustainability 2017, 9, 2128. https://doi.org/10.3390/su9112128
Li S, Li R. Energy Sustainability Evaluation Model Based on the Matter-Element Extension Method: A Case Study of Shandong Province, China. Sustainability. 2017; 9(11):2128. https://doi.org/10.3390/su9112128
Chicago/Turabian StyleLi, Siqi, and Rongrong Li. 2017. "Energy Sustainability Evaluation Model Based on the Matter-Element Extension Method: A Case Study of Shandong Province, China" Sustainability 9, no. 11: 2128. https://doi.org/10.3390/su9112128
APA StyleLi, S., & Li, R. (2017). Energy Sustainability Evaluation Model Based on the Matter-Element Extension Method: A Case Study of Shandong Province, China. Sustainability, 9(11), 2128. https://doi.org/10.3390/su9112128