Income Driven Patterns of the Urban Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Imagery and Data Set
- Landsat-5 TM imagery from 2000 to 2010, Path and Row 221-081 [49];
- Monthly rainfall data obtained from the Database for Meteorological Research [51], which covers the period from October to December, were used to identify possible drought periods in the warmest season;
- Soil types map in a 1:5,000,000 scale [52];
- Census data of Neighborhoods limits and urban sectors [35];
- Census data of Population by neighborhoods in 2010 [35];
- Census data of Household Incomes (Brazilian salary units) at neighborhood scale, from 2000 and 2010 [35];
- Digital geospatial reference from National Aeronautics and Space Administration-Global Land Survey [49].
2.3. Calibration and Data Generation
2.3.1. Reflectance Data Generation
2.3.2. Classification of Surface Cover Types
2.3.3. Thermal Data Generation
2.4. LST and Biophysical Descriptors
2.5. TSDS Approach
3. Results
3.1. Data Retrieval
3.2. Spatially Distributed Patterns of UHI
3.3. Analysis of Surface Physical Descriptors
3.4. Urban Development Modelling
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brown, L. World on the Edge; W.W. Norton & Company: New York, NY, USA, 2011; p. 325. [Google Scholar]
- Marshall, A. Princípios de Economia; Nova Cultural: São Paulo, Brazil, 1996. [Google Scholar]
- Krafta, R. Modelling intra-urban configurational development. Environ. Plan. B 1994, 21, 67–82. [Google Scholar] [CrossRef]
- Ioppolo, G.; Heijungs, R.; Cucurachi, S.; Salomone, R.; Kleijn, R. Urban Metabolism: Many Open Questions for Future. In Pathways to Environmental Sustainability: Methodologies and Experiences; Salomone, R., Saija, G., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 23–32. [Google Scholar]
- Harvey, D. The Urbanization of Capital; John Hopkins Press: Baltimore, Maryland, 1985. [Google Scholar]
- Shen, L.; Kyllo, J.M.; Guo, X. An Integrated Model Based on a Hierarchical Indices System for Monitoring and Evaluating Urban Sustainability. Sustainability 2013, 5, 524–559. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, Y. Demand for urban forests in United States cities. Landsc. Urban Plan. 2008, 84, 293–300. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, Y. Demand for urban forests and economic welfare: Evidence from the Southeastern U.S. cities. J. Agric. Appl. Econ. 2006, 38, 279–285. [Google Scholar] [CrossRef]
- Ridd, M.K. Exploring a V–I–S (Vegetation–Impervious Surface–Soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. Int. J. Remote Sens. 1995, 16, 2165–2185. [Google Scholar] [CrossRef]
- Arnold, C.L.; Gibbons, C.J. Impervious Surface Coverage: The emergence environmental of a key environmental indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Zhang, C.; Cooper, H.; Selch, D.; Meng, X.; Qiu, F.; Myint, S.W.; Roberts, C.; Xie, Z. Mapping urban land cover types using object-based multiple endmember spectral mixture analysis. Remote Sens. Lett. 2014, 5, 521–529. [Google Scholar] [CrossRef]
- Landsberg, H.E. The Urban Climate; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Owen, T.W.; Carlson, T.N.; Gillies, R.R. Remotely sensed surface parameters governing urban climate change. Int. J. Remote Sens. 1998, 19, 1663–1681. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Solecki, W.D.; Parshall, L.; Chopping, M.; Pope, G.; Goldberg, R. Characterizing the urban heat island in current and future climates in New Jersey. Environ. Hazards 2005, 6, 51–62. [Google Scholar] [CrossRef]
- Hatvani-Kovacs, G.; Belusko, M.; Skinner, N.; Pockett, J.; Boland, J. Heat stress risk and resilience in the urban environment. Sustain. Cities Soc. 2016, 26, 278–288. [Google Scholar] [CrossRef]
- Bruntland, G. Our Common Future: The World Commission on Environment and Development; Oxford University Press: New York, NY, USA, 1987. [Google Scholar]
- Schroeder, T.A.; Cohen, W.B.; Song, C.; Canty, M.J.; Yang, Z. Radiometric Correction of Multi-Temporal Landsat Data for Characterization of Early Successional Forest Patterns in Western Oregon. Remote Sens. Environ. 2006, 103, 16–26. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of Landscape Structure on Surface Urban Heat Islands: A Case Study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Crompton, J.L. Parks and Economic Development; American Planning Association: Chicago, IL, USA, 2001. [Google Scholar]
- Anderson, L.M.; Cordell, H.K. Influence of Trees on Residential Property Values in Athens, Georgia (U.S.A.): A Survey based on Actual Sales Prices. Landsc. Urban Plan. 1988, 15, 153–164. [Google Scholar] [CrossRef]
- Stern, D.I. International Society for Ecological Economics—Internet Encyclopaedia of Ecological Economics. The Environmental Kuznets Curve; Department of Economics, Rensselaer Polytechnic Institute: Troy, NY, USA, 2003; p. 18. [Google Scholar]
- United States Energy Information Administration (EIA). International Data on CO2 Emissions. Available online: http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=90&pid=44&aid=8 (accessed on 2 July 2016).
- Escobedo, F.J.; Novak, D.J.; Wagner, J.E.; De la Maza, C.L.; Rodriguez, M.; Crane, D.E.; Hernandéz, J. The socioeconomics and management of Santiago de Chile's public urban forests. Urban For. Urban Green. 2006, 4, 105–114. [Google Scholar] [CrossRef]
- Gusso, A.; Cafruni, C.; Bordin, F.; Veronez, M.R.; Lenz, L.; Crija, S. Multi-Temporal Patterns of Urban Heat Island as Response to Economic Growth Management. Sustainability 2015, 7, 3129–3145. [Google Scholar] [CrossRef]
- Jauregui, E. Heat island development in Mexico City. Atmos. Environ. 1997, 31, 3821–3831. [Google Scholar] [CrossRef]
- Streutker, D.R. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens. Environ. 2003, 85, 282–289. [Google Scholar] [CrossRef]
- Defense Meteorological Satellite Program—U.S. Department of Defense. 2013. Available online: http://go.nature.com/u7b6Os (accessed on 9 July 2015).
- Hung, T.; Daisuke, U.; Shiro, O.; Yoshifumi, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs. Geoinform. 2006, 8, 34–48. [Google Scholar]
- Liu, H.; Weng, Q. An examination of the effect of landscape pattern, land surface temperature, and socioeconomic conditions on WNV dissemination in Chicago. Environ. Monit. Assess. 2009, 159, 143–161. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Gusso, A.; Ducati, J.R. Algorithm for Soybean Classification Using Medium Resolution Satellite Images. Remote Sens. 2012, 4, 3127–3142. [Google Scholar] [CrossRef]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The Next Landsat Satellite: The Landsat Data Continuity Mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.R.; Hook, S.J.; Raqueno, N.G.; Markham, B.L.; Radocinski, R.G. Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration. Remote Sens. 2014, 6, 11607–11626. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística—System for Automatic Data Retrieval. (IBGE-SIDRA). Available online: http://www.sidra.ibge.gov.br/ (accessed on 12 December 2015).
- Prefeitura Municipal de Porto Alegre—Plano Diretor de Arborização Urbana (PMPA-PDAU). Available online: http://www2.portoalegre.rs.gov.br/smam/default.php?reg=1&p_secao=8 (accessed on 17 February 2015).
- Köppen, W. Climatologia: Con un Estúdio de los Climas de la Tierra; Fondo de Cultura Econômica: Tlalpan, Mexico, 1948; p. 466. (In Spanish) [Google Scholar]
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Bolstad, P.V.; Flanagan, L.B.; Goldstein, A.H.; Hollinger, D.Y.; Misson, L.; et al. A New Model of Gross Primary Productivity for North American Ecosystems Based Solely on the Enhanced Vegetation Index and Land Surface Temperature from MODIS. Remote Sens. Environ. 2008, 112, 1633–1646. [Google Scholar] [CrossRef]
- Ogashawara, I.; Bastos, V.S.B. A Quantitative Approach for Analyzing the Relationship between Urban Heat Islands and Land Cover. Remote Sens. 2012, 4, 3596–3618. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and its Application to the Israel-Egypt Border Region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Callejas, I.J.A.; Oliveira, A.S.; Santos, F.M.M.; Durante, L.C.; Nogueira, M.C.J.A.; Zeilhofer, P. Relationship between land use/cover and surface temperatures in the urban agglomeration of Cuiabá-Várzea Grande, Central Brazil. J. Appl. Remote Sens. 2011, 5, 1–15. [Google Scholar] [CrossRef]
- Markham, B.L.; Barker, J.L. Landsat MSS and TM Post-Calibration Dynamic Ranges, Exoatmospheric Reflectances and at-Satellite Temperatures; Landsat Tech. Note 1; Earth Observation Satellite Co.: Lanham, MD, USA, 1986. [Google Scholar]
- Wukelic, G.E.; Gibbons, D.E.; Martucci, L.M.; Foote, H.P. Radiometric Calibration of Landsat Thematic Mapper Thermal Band. Remote Sens. Environ. 1989, 28, 339–347. [Google Scholar] [CrossRef]
- Chavez, P.S., Jr. Image-Based Atmospheric Correction—Revisited and Improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar]
- Souza, J.D.; Silva, B.B. Correção atmosférica para temperatura da superfície obtida com imagem TM—Landsat-5. Rev. Bras. Geogr. Fís. 2005, 23, 349–358. [Google Scholar] [CrossRef]
- Jiménez-Munõz, J.C.; Cristóbal, J.; Sobrino, J.A.; Sòria, G.; Ninyerola, M.; Pons, X. Land Surface Temperature Retrieval from LANDSAT TM 5. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Munõz, J.C.; Paolini, L. Land Surface Temperature Retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Gusso, A.; Veronez, M.R.; Robinson, F.; Roani, V.; Da Silva, R.C. Evaluating the thermal spatial distribution signature for environmental management and vegetation health monitoring. Int. J. Adv. Remote Sens. GIS 2014, 3, 433–445. [Google Scholar]
- United States Geological Survey (USGS)—Earth Resources Observation & Science Center (EROS). Available online: http://earthexplorer.usgs.gov/ (accessed on 15 February 2014).
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission: A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorologia (INMET). Available online: http://www.inmet.gov. br/portal/index.php?r=bdmep/bdmep (accessed on 12 February 2015).
- Instituto Brasileiro de Geografia e Estatística—Soil Classification and Maps. Available online: http://mapas.ibge.gov.br/tematicos/solos (accessed on 15 January 2015).
- WorldClim—Global Climate Data, Free Climate Data for Ecological Modeling and GIS. Available online: http://www.worldclim.org/tiles.php. (accessed on 1 January 2016).
- Teillet, P.M.; Fedosejevs, G.; Gauthier, R.P.; O’Neill, N.T.; Thome, K.J.; Biggar, S.F.; Ripley, H.; Meygret, A. A generalized approach to the vicarious calibration of multiple Earth observation sensors using hyperspectral data. Remote Sens. Environ. 2001, 77, 304–327. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Wu, X.; Goldberg, M. Global space-based inter-calibration system (GSICS): A status report. Atmospheric and Environmental Remote Sensing Data Processing and Utilization III: Readiness for GEOSS. Proc. SPIE 2007, 6684. [Google Scholar] [CrossRef]
- Hooker, B.; McClain, C.R.; Mannino, A. A Comprehensive Plan for the Long Term Calibration and Validation of Oceanic and Biogeochemical Satellite Data; NASA/SP-2007-214152; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 2007.
- Ponzoni, F.J.; Pinto, C.T.; Lamparelli, R.A.C.; Junior, J.Z.; Antunes, M.A.H. Calibração de Sensores Orbitais; Oficina de Textos: São Paulo, Brasil, 2015. [Google Scholar]
- Chavez, P.S. An Improved Dark-Object Subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. Use of impervious surface in urban land-use classification. Remote Sens. Environ. 2006, 102, 146–160. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Liu, J.; Pattey, E.; Jégo, G. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sens. Environ. 2012, 123, 347–358. [Google Scholar] [CrossRef]
- Ma, Y.; Kuang, Y.; Huang, N. Coupling Urbanization Analyses for Studying Urban Thermal Environment and its Interplay with Biophysical Parameters Based on TM/ETM+ Imagery. Int. J. Appl. Earth Obse. Geoinform. 2010, 12, 110–118. [Google Scholar] [CrossRef]
- Markham, B.L.; Barker, J.L. Thematic Mapper Band pass Solar Exoatmospherical Irradiances. Int. J. Remote Sens. 1987, 8, 517–523. [Google Scholar] [CrossRef]
- Andersen, H.S. Land Surface Temperature Estimation Based on NOAA-AVHRR Data during the HAPEX-Sahel Experiment. J. Hydrol. 1997, 189, 788–814. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Allen, R.; Tasumi, M.; Trezza, R. SEBAL (Surface Energy Balance Algorithms for Land)—Advanced Training and Users Manual—Idaho Implementation (Version 1.0); The Idaho Department of Water Resources: Boise, ID, USA, 2002.
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. The Surface Energy Balance Algorithm for Land (SEBAL): Part 1 formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.; Roerink, G.J.; van der Wal, T. The Surface Energy Balance Algorithm for Land (SEBAL): Part 2 validation. J. Hydrol. 1998, 212–213, 213–229. [Google Scholar] [CrossRef]
- Kuo, F.E. The role of arboriculture in a healthy social ecology. J. Arboricult. 2003, 29, 148–155. [Google Scholar]
- United States Environmental Protection Agency (EPA). Reducing Urban Heat Islands: Compendium of Strategies-Trees and Vegetation. 2008. Available online: http://www.epa.gov/heatisland/resources/compendium.htm (accessed on 1 March 2012). [Google Scholar]
- Sandholt, L.; Rasmussen, K.; Andersen, J.A. Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Valor, E.; Casselles, V. Mapping Land Surface Emissivity from NDVI: Application to European, African, and South American Areas. Remote Sens. Environ. 1996, 57, 167–184. [Google Scholar] [CrossRef]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing; The Guilford Press: New York, NY, USA, 2011; p. 3. [Google Scholar]
- Bottyán, Z.; Unger, J. A Multiple Linear Statistical Model for Estimating the Mean Maximum Urban Heat Island. Theor. Appl. Climatol. 2003, 75, 233–243. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective; Prentice Hall: Upper Saddle River, NJ, USA, 2007; p. 592. [Google Scholar]
- Rosenzweig, C.; Solecki, W.D.; Parshall, L.; Lynn, B.; Cox, J.; Goldberg, R.; Hodges, S.; Gaffin, S.; Slosberg, R.B.; Savio, P.; et al. Mitigating New York city’s Heat Island: Integrating stakeholder perspectives and scientific evaluation. Am. Meteorol. Soc. 2009, 1, 1297–1312. [Google Scholar] [CrossRef]
- Chudnovsky, A.; Ben-Dor, E.; Saaroni, H. Diurnal thermal behavior of selected urban objects using remote sensing measurements. Energy Build. 2004, 36, 1063–1074. [Google Scholar] [CrossRef]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Prefeitura Municipal de Porto Alegre—Centro de Pesquisa Histórica (PMPA-CPH). Coordenação de Memória Cultural da Secretaria Municipal de Cultura. Available online: http://lproweb.procempa.com.br/pmpa/prefpoa/observatorio/usu_doc/historia_dos_bairros_de_porto_alegre.pdf (accessed on 7 December 2014).
- Banco Central do Brasil. Available online: www.bcb.gov.br/?FALECONOSCO (accessed on 5 May 2016).
- Taddeo, R.; Simboli, A.; Ioppolo, G.; Morgante, A. Industrial Symbiosis, Networking and Innovation: The Potential Role of Innovation Poles. Sustainability 2017, 9, 169. [Google Scholar] [CrossRef]
Acquisition | θZ-90 | LST (K) | EVI-2 | Surface Cover Types (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Date | (deg) | Min. | Max. | Average | Min. | Max. | Average | Vegetation | ISA | Soil | |
01 | 1 January 2001 | 55.6 | 293.95 | 310.59 | 304.47 | 0.0 | 0.91 | 0.22 | 28.70 | 65.48 | 5.51 |
02 | 2 February 2001 | 51.6 | 291.53 | 303.12 | 297.42 | 0.0 | 0.74 | 0.23 | 30.28 | 64.97 | 4.44 |
03 | 20 January 2002 | 53.5 | 294.01 | 303.95 | 299.56 | 0.0 | 0.68 | 0.21 | 22.48 | 72.12 | 5.16 |
04 | 11 February 2004 | 50.1 | 289.90 | 304.37 | 298.07 | 0.0 | 0.73 | 0.21 | 23.55 | 70.29 | 5.66 |
05 | 12 January 2005 | 57.0 | 287.55 | 313.59 | 305.20 | 0.0 | 0.68 | 0.19 | 17.31 | 74.33 | 7.89 |
06 | 2 January 2007 | 59.5 | 294.91 | 307.64 | 301.69 | 0.0 | 0.88 | 0.22 | 25.01 | 68.49 | 5.99 |
07 | 3 February 2007 | 53.9 | 298.38 | 314.94 | 307.77 | 0.0 | 0.74 | 0.22 | 24.33 | 69.37 | 5.80 |
08 | 6 February 2008 | 53.5 | 290.36 | 305.19 | 298.27 | 0.0 | 0.71 | 0.21 | 21.86 | 72.71 | 4.70 |
09 | 7 January 2009 | 56.6 | 288.97 | 303.12 | 296.55 | 0.0 | 0.72 | 0.22 | 23.03 | 71.05 | 5.23 |
10 | 11 February 2010 | 51.8 | 287.73 | 300.60 | 294.67 | 0.0 | 0.76 | 0.22 | 22.58 | 74.67 | 2.28 |
Imagery | θZ-90 | Radiometric Estimators | Surface Cover Types | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | (deg) | SD | LST (K) | SD | EVI-2 | SD | %Vegetation | SD | %ISA | SD | %Soil | SD |
2001 to 2010 | 54.31 | 2.87 | 300.38 | 4.26 | 0.215 | 0.01 | 23.91 | 3.61 | 70.35 | 3.34 | 5.27 | 1.41 |
Neighborhood | Radiometric Estimators | Surface Cover Types (VIS) | Terrain-Socio-Economic | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | LST (K) | SD | EVI-2 (Dim.) | SD | %Veg. | SD | %ISA | SD | %Soil | SD | HI (Salaries) | Alt. (m) | Pop. D. (inh/ha) |
Auxiliadora | 300.1 | 0.70 | 0.17 | 0.06 | 4.6 | 3.6 | 89.7 | 3.3 | 7.0 | 1.4 | 9.8 | 36.8 | 114.3 |
Azenha | 301.0 | 0.76 | 0.16 | 0.07 | 6.4 | 3.6 | 91.3 | 3.3 | 2.9 | 1.4 | 5.6 | 16.5 | 8.0 |
Bela Vista | 298.7 | 0.56 | 0.22 | 0.08 | 17.6 | 3.6 | 77.9 | 3.3 | 6.3 | 1.4 | 17.6 | 67.7 | 118.8 |
Boa Vista | 299.8 | 0.86 | 0.26 | 0.12 | 35.9 | 3.6 | 60.4 | 3.3 | 5.6 | 1.4 | 12.0 | 46.0 | 5.5 |
Bom Fim | 300.5 | 0.49 | 0.14 | 0.05 | 1.2 | 3.6 | 96.1 | 3.3 | 2.3 | 1.4 | 7.7 | 24.9 | 24.2 |
Bom Jesus | 300.7 | 0.73 | 0.20 | 0.07 | 11.6 | 3.6 | 88.0 | 3.3 | 1.9 | 1.4 | 2.7 | 79.3 | 146.8 |
Cel. A. Borges | 300.1 | 1.29 | 0.27 | 0.10 | 40.6 | 3.6 | 58.9 | 3.3 | 2.5 | 1.4 | 2.6 | 99.2 | 60.0 |
Centro | 299.6 | 1.07 | 0.12 | 0.07 | 5.0 | 3.6 | 90.3 | 3.3 | 4.4 | 1.4 | 6.5 | 24.8 | 181.2 |
Chácara das P. | 300.3 | 0.51 | 0.21 | 0.06 | 9.7 | 3.6 | 90.1 | 3.3 | 1.7 | 1.4 | 12.7 | 60.6 | 61.7 |
Cidade Baixa | 300.8 | 0.63 | 0.14 | 0.06 | 3.6 | 3.6 | 94.8 | 3.3 | 3.1 | 1.4 | 5.9 | 12.3 | 21.8 |
Cristo Red. | 301.4 | 0.63 | 0.17 | 0.06 | 6.6 | 3.6 | 92.5 | 3.3 | 1.8 | 1.4 | 5.7 | 33.4 | 109.9 |
Farroupilha | 298.6 | 1.25 | 0.29 | 0.13 | 48.9 | 3.6 | 44.6 | 3.3 | 8.9 | 1.4 | 8.9 | 18.4 | 15.8 |
Floresta | 301.7 | 0.57 | 0.11 | 0.05 | 0.6 | 3.6 | 97.1 | 3.3 | 2.1 | 1.4 | 6.0 | 12.7 | 91.0 |
Glória | 300.3 | 0.84 | 0.23 | 0.09 | 23.7 | 3.6 | 72.1 | 3.3 | 6.6 | 1.4 | 4.7 | 50.9 | 81.9 |
Higienópolis | 299.9 | 0.61 | 0.20 | 0.07 | 10.5 | 3.6 | 83.3 | 3.3 | 6.7 | 1.4 | 10.7 | 45.5 | 99.7 |
Independência | 300.1 | 1.00 | 0.16 | 0.08 | 6.0 | 3.6 | 90.4 | 3.3 | 3.8 | 1.4 | 9.9 | 43.6 | 231.8 |
Jard. Botânico | 299.5 | 1.55 | 0.25 | 0.12 | 32.2 | 3.6 | 64.0 | 3.3 | 5.6 | 1.4 | 7.5 | 27.6 | 59.5 |
Jard. Carvalho | 299.8 | 1.59 | 0.26 | 0.11 | 32.9 | 3.6 | 63.6 | 3.3 | 4.4 | 1.4 | 3.6 | 64.6 | 80.6 |
Jard. do Salso | 299.6 | 1.32 | 0.27 | 0.11 | 39.6 | 3.6 | 56.6 | 3.3 | 5.7 | 1.4 | 6.6 | 39.6 | 46.8 |
Jard. Floresta | 300.9 | 0.64 | 0.23 | 0.09 | 22.8 | 3.6 | 77.2 | 3.3 | 2.7 | 1.4 | 3.4 | 17.4 | 46.8 |
Jard. Itú Sab. | 300.1 | 1.41 | 0.26 | 0.11 | 32.1 | 3.6 | 66.5 | 3.3 | 2.9 | 1.4 | 6.4 | 55.4 | 46.5 |
Jard. Lindoia | 300.8 | 0.60 | 0.19 | 0.07 | 10.3 | 3.6 | 86.7 | 3.3 | 5.3 | 1.4 | 9.6 | 20.8 | 99.4 |
Jard. São Ped. | 300.5 | 0.76 | 0.24 | 0.12 | 36.6 | 3.6 | 62.7 | 3.3 | 2.6 | 1.4 | 5.6 | 12.3 | 5.3 |
Medianeira | 300.6 | 0.98 | 0.20 | 0.08 | 11.4 | 3.6 | 85.9 | 3.3 | 4.5 | 1.4 | 5.4 | 40.3 | 63.2 |
Menino Deus | 300.3 | 0.75 | 0.18 | 0.07 | 8.6 | 3.6 | 88.4 | 3.3 | 3.8 | 1.4 | 8.7 | 14.9 | 14.2 |
Moinhos de V. | 299.2 | 0.65 | 0.21 | 0.09 | 18.1 | 3.6 | 76.0 | 3.3 | 8.5 | 1.4 | 16.1 | 41.5 | 79.6 |
Mont Serrat | 299.5 | 0.80 | 0.20 | 0.06 | 8.1 | 3.6 | 88.5 | 3.3 | 4.6 | 1.4 | 12.5 | 63.6 | 133.1 |
Navegantes | 301.3 | 0.93 | 0.11 | 0.06 | 1.4 | 3.6 | 96.1 | 3.3 | 3.4 | 1.4 | 3.5 | 7.4 | 20.6 |
Partenon | 300.5 | 1.26 | 0.22 | 0.10 | 22.8 | 3.6 | 75.7 | 3.3 | 2.9 | 1.4 | 4.1 | 45.9 | 79.0 |
Passo da Areia | 301.1 | 1.10 | 0.20 | 0.11 | 16.0 | 3.6 | 82.1 | 3.3 | 2.7 | 1.4 | 5.7 | 24.6 | 85.3 |
Passo das P. | 300.4 | 1.39 | 0.26 | 0.12 | 35.1 | 3.6 | 63.0 | 3.3 | 4.1 | 1.4 | 3.4 | 41.5 | 113.6 |
Petrópolis | 299.4 | 0.99 | 0.21 | 0.09 | 16.0 | 3.6 | 77.3 | 3.3 | 8.4 | 1.4 | 10.7 | 54.1 | 110.3 |
Rio Branco | 299.6 | 1.00 | 0.18 | 0.07 | 9.0 | 3.6 | 87.0 | 3.3 | 5.2 | 1.4 | 12.0 | 42.2 | 119.5 |
Santa Cecilia | 300.6 | 0.60 | 0.18 | 0.09 | 15.0 | 3.6 | 81.4 | 3.3 | 5.0 | 1.4 | 7.6 | 17.1 | 80.5 |
Santa Tereza | 299.5 | 1.43 | 0.26 | 0.11 | 34.9 | 3.6 | 61.0 | 3.3 | 5.7 | 1.4 | 3.5 | 59.7 | 114.0 |
Santana | 300.7 | 0.52 | 0.15 | 0.06 | 3.2 | 3.6 | 93.1 | 3.3 | 4.8 | 1.4 | 7.1 | 14.7 | 161.7 |
Santo Antônio | 300.2 | 0.79 | 0.23 | 0.10 | 24.8 | 3.6 | 72.2 | 3.3 | 4.4 | 1.4 | 5.2 | 55.0 | 99.1 |
São Geraldo | 301.7 | 0.73 | 0.12 | 0.05 | 1.4 | 3.6 | 95.4 | 3.3 | 4.7 | 1.4 | 4.3 | 9.8 | 56.9 |
São Joao | 301.0 | 1.57 | 0.23 | 0.14 | 33.1 | 3.6 | 60.4 | 3.3 | 7.4 | 1.4 | 6.6 | 8.7 | 29.4 |
São Jose | 300.3 | 1.44 | 0.22 | 0.07 | 18.9 | 3.6 | 80.1 | 3.3 | 2.6 | 1.4 | 2.2 | 102.7 | 140.2 |
São Sebastião | 301.0 | 0.63 | 0.19 | 0.07 | 8.4 | 3.6 | 89.4 | 3.3 | 3.8 | 1.4 | 4.2 | 22.1 | 138.2 |
Sarandi | 300.8 | 1.57 | 0.22 | 0.12 | 23.9 | 3.6 | 73.6 | 3.3 | 3.4 | 1.4 | 2.6 | 12.0 | 94.5 |
Sta. M. Goretti | 301.1 | 0.87 | 0.15 | 0.06 | 6.7 | 3.6 | 91.9 | 3.3 | 2.6 | 1.4 | 4.4 | 9.0 | 4.2 |
Três Figueiras | 299.5 | 0.93 | 0.26 | 0.10 | 32.4 | 3.6 | 62.7 | 3.3 | 6.6 | 1.4 | 17.7 | 73.2 | 3.0 |
Vila Ipiranga | 300.7 | 1.09 | 0.23 | 0.10 | 25.3 | 3.6 | 77.5 | 3.3 | 2.3 | 1.4 | 5.9 | 48.0 | 92.0 |
Vila Jardim | 300.7 | 0.61 | 0.21 | 0.06 | 12.7 | 3.6 | 87.9 | 3.3 | 1.6 | 1.4 | 4.0 | 89.4 | 87.4 |
Vila João P. | 301.4 | 0.48 | 0.19 | 0.06 | 6.3 | 3.6 | 94.3 | 3.3 | 1.3 | 1.4 | 3.2 | 39.5 | 132.6 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gusso, A.; Silva, A.; Boland, J.; Lenz, L.; Philipp, C. Income Driven Patterns of the Urban Environment. Sustainability 2017, 9, 275. https://doi.org/10.3390/su9020275
Gusso A, Silva A, Boland J, Lenz L, Philipp C. Income Driven Patterns of the Urban Environment. Sustainability. 2017; 9(2):275. https://doi.org/10.3390/su9020275
Chicago/Turabian StyleGusso, Anibal, André Silva, John Boland, Leticia Lenz, and Conrad Philipp. 2017. "Income Driven Patterns of the Urban Environment" Sustainability 9, no. 2: 275. https://doi.org/10.3390/su9020275
APA StyleGusso, A., Silva, A., Boland, J., Lenz, L., & Philipp, C. (2017). Income Driven Patterns of the Urban Environment. Sustainability, 9(2), 275. https://doi.org/10.3390/su9020275