Screening of Tree Species for Improving Outdoor Human Thermal Comfort in a Taiwanese City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermal Environment and Planting Design of Outdoor Space
2.2. Screening of Appropriate Tree Species Using HCA
3. Results and Discussion
3.1. Tree Database and the Relationships between Average Crown Diameter, Plant Height, Diameter at Breast Height, and SVF
3.2. Relationship between Crown Diameters of Plants, PET, and Tmrt
3.3. Appropriate Tree Species for Improving Outdoor Thermal Comfort
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lin, T.-P.; Tsai, K.-T.; Hwang, R.-L.; Matzarakis, A. Quantification of the effect of thermal indices and sky view factor on park attendance. Landsc. Urban Plan. 2012, 107, 137–146. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Holst, J.; Mayer, H. Impacts of street design parameters on human-biometeorological variables. Meteorol. Z. 2011, 20, 541–552. [Google Scholar]
- Mullaney, J.; Lucke, T.; Trueman, S.J. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 2015, 134, 157–166. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H.; Chen, L. Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landsc. Urban Plan. 2016, 148, 37–50. [Google Scholar] [CrossRef]
- De Abreu-Harbich, L.V.; Labaki, L.C.; Matzarakis, A. Effect of tree planting design and tree species on human thermal comfort in the tropics. Landsc. Urban Plan. 2015, 138, 99–109. [Google Scholar] [CrossRef]
- Sanusi, R.; Johnstone, D.; May, P.; Livesley, S.J. Street orientation and side of the street greatly influence the microclimatic benefits street trees can provide in summer. J. Environ. Qual. 2016, 45, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-M.; Jan, F.-C.; Zhang, L. A simplified assessment of how tree allocation, wind environment, and shading affect human comfort. Urban For. Urban Green. 2016, 18, 126–137. [Google Scholar] [CrossRef]
- Lee, H.; Holst, J.; Mayer, H. Modification of Human-Biometeorologically Significant Radiant Flux Densities by Shading as Local Method to Mitigate Heat Stress in Summer within Urban Street Canyons. Adv. Meteorol. 2013, 2013, 312572. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H.; Schindler, D. Importance of 3-D radiant flux densities for outdoor human thermal comfort on clear-sky summer days in Freiburg, Southwest Germany. Meteorol. Z. 2014, 23, 315. [Google Scholar]
- Coutts, A.M.; White, E.C.; Tapper, N.J.; Beringer, J.; Livesley, S.J. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor. Appl. Climatol. 2016, 124, 55–68. [Google Scholar] [CrossRef]
- Doick, K.; Hutchings, T. Air temperature regulation by trees and wider green infrastructure in urban areas: The current state of knowledge; Research note 12 (FCRN012). For. Comm. 2013, 12, 1–10. [Google Scholar]
- Leuzinger, S.; Vogt, R.; Körner, C. Tree surface temperature in an urban environment. Agric. For. Meteorol. 2010, 150, 56–62. [Google Scholar] [CrossRef]
- Kong, F.; Yan, W.; Zheng, G.; Yin, H.; Cavan, G.; Zhan, W.; Zhang, N.; Cheng, L. Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agric. For. Meteorol. 2016, 217, 22–34. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, Y.; Pan, H. Cooling and humidifying effect of plant communities in subtropical urban parks. Urban For. Urban Green. 2013, 12, 323–329. [Google Scholar] [CrossRef]
- Zheng, S.; Zhao, L.; Li, Q. Numerical simulation of the impact of different vegetation species on the outdoor thermal environment. Urban For. Urban Green. 2016, 18, 138–150. [Google Scholar] [CrossRef]
- Tan, Z.; Lau, K.K.-L.; Ng, E. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy Build. 2016, 114, 265–274. [Google Scholar] [CrossRef]
- Nastos, P.T.; Matzarakis, A. Weather impacts on respiratory infections in Athens, Greece. Int. J. Biometeorol. 2006, 50, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Cheng, V.; Ng, E.; Chan, C.; Givoni, B. Outdoor thermal comfort study in a sub-tropical climate: A longitudinal study based in Hong Kong. Int. J. Biometeorol. 2012, 56, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Nikolopoulou, M.; Lykoudis, S. Thermal comfort in outdoor urban spaces: Analysis across different European countries. Build. Environ. 2006, 41, 1455–1470. [Google Scholar] [CrossRef]
- Scott, K.I.; Simpson, J.R.; McPherson, E.G. Effects of tree cover on parking lot microclimate and vehicle emissions. J. Arboric. 1999, 25, 129–142. [Google Scholar]
- Dimoudi, A.; Nikolopoulou, M. Vegetation in the urban environment: Microclimatic analysis and benefits. Energy Build. 2003, 35, 69–76. [Google Scholar] [CrossRef]
- Emmanuel, R.; Johansson, E. Influence of urban morphology and sea breeze on hot humid microclimate: The case of Colombo, Sri Lanka. Clim. Res. 2006, 30, 189–200. [Google Scholar] [CrossRef]
- Ha, J.; Lee, S.; Park, C. Temporal Effects of Environmental Characteristics on Urban Air Temperature: The Influence of the Sky View Factor. Sustainability 2016, 8, 895. [Google Scholar] [CrossRef]
- Lai, A.; Maing, M.; Ng, E. Observational studies of mean radiant temperature across different outdoor spaces under shaded conditions in densely built environment. Build. Environ. 2017, 114, 397–409. [Google Scholar] [CrossRef]
- Jan, F.-C.; Hsieh, C.-M.; Ishikawa, M.; Sun, Y.-H. The influence of tree allocation and tree transpiration on the urban microclimate: An analysis of a subtropical urban park. Environ. Urban. Asia 2013, 4, 135–150. [Google Scholar] [CrossRef]
- Gál, T.; Unger, J. A new software tool for SVF calculations using building and tree-crown databases. Urban Clim. 2014, 10 Pt 3, 594–606. [Google Scholar] [CrossRef]
- Lin, T.-P.; Matzarakis, A.; Hwang, R.-L. Shading effect on long-term outdoor thermal comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar] [CrossRef]
- Tsai, H.; Lin, Y.-H.; Yang, M.-D. Exploring Long Term Spatial Vegetation Trends in Taiwan from AVHRR NDVI3g Dataset Using RDA and HCA Analyses. Remote Sens. 2016, 8, 290. [Google Scholar] [CrossRef]
- Chen, H.-W.; Chen, W.-Y.; Chang, C.-N.; Chuang, Y.-H.; Lin, Y.-H. Identifying airborne metal particles sources near an optoelectronic and semiconductor industrial park. Atmos. Res. 2016, 174–175, 97–105. [Google Scholar] [CrossRef]
- Kelepertzis, E.; Argyraki, A. Mercury in the urban topsoil of Athens, Greece. Sustainability 2015, 7, 4049–4062. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, J.; Zhang, L. Risk Assessment, Partition and Economic Loss Estimation of Rice Production in China. Sustainability 2015, 7, 563–583. [Google Scholar] [CrossRef]
- Yang, F.; Qian, F.; Zhao, W. Towards a Climate-Responsive Vertical Pedestrian System: An Empirical Study on an Elevated Walkway in Shanghai China. Sustainability 2016, 8, 744. [Google Scholar] [CrossRef]
- International Standard Organization (ISO). International Standard 7726, Thermal Environment-Instruments and Method for Measuring Physical Quantities; International Standard Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Thorsson, S.; Lindberg, F.; Eliasson, I.; Holmer, B. Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int. J. Climatol. 2007, 27, 1983–1993. [Google Scholar] [CrossRef]
- Mayer, H.; Höppe, P. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Mayer, H.; Holst, J.; Dostal, P.; Imbery, F.; Schindler, D. Human thermal comfort in summer within an urban street canyon in Central Europe. Meteorol. Z. 2008, 17, 241–250. [Google Scholar]
- Lee, H.; Mayer, H. Validation of the mean radiant temperature simulated by the RayMan software in urban environments. Int. J. Biometeorol. 2016, 60, 1775–1785. [Google Scholar] [CrossRef] [PubMed]
- Marliana, S.N.; Rühe, F. Post-reforestation vegetation development on abandoned highland fields in Java, Indonesia. For. Ecol. Manag. 2014, 328, 245–253. [Google Scholar] [CrossRef]
- Gering, L.R.; May, D.M. The relationship of diameter at breast height and crown diameter for four species groups in Hardin County, Tennessee. South. J. Appl. For. 1995, 19, 177–181. [Google Scholar]
- Lu, F.-Y.; Tasi, K.-H.; Jhuang, T.; Jhang, Y. Illustrated Commercial Wood in Taiwan; Council of Agriculture, & Chiayi Institute of Technology: Chiayi, Taiwan, 1998. [Google Scholar]
- Eriksson, L.; Byrne, T.; Johansson, E.; Trygg, J.; Vikström, C. Multi-and Megavariate Data Analysis Basic Principles and Applications; Umetrics Academy: Umeå, Sweden, 2013. [Google Scholar]
- Davis, J.C. Statistics and Data Analysis in Geology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1990; p. 656. [Google Scholar]
- Punj, G.; Stewart, D.W. Cluster analysis in marketing research: Review and suggestions for application. J. Mark. Res. 1983, 20, 134–148. [Google Scholar] [CrossRef]
- Milligan, G.W.; Cooper, M.C. An examination of procedures for determining the number of clusters in a data set. Psychometrika 1985, 50, 159–179. [Google Scholar] [CrossRef]
- Lin, T.-P.; Matzarakis, A. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int. J. Biometeorol. 2008, 52, 281–290. [Google Scholar] [CrossRef] [PubMed]
Average Crown Diameter | Plant Specie |
---|---|
Crown diameters exceeding 10 m | Tectona grandis, Peltophorum pterocarpum, Cerbera manghas, Hibiscus tiliaceus, Ficus microcarpa, Betula pendula, Delonix regia, Haematoxylum campechianum, Zelkova serrata, and Terminalia catappa |
Crown diameters between 5 and 10 m | Roystonea regia, Lagerstroemia speciosa, Terminalia catappa, Araucaria heterophylla, Terminalia mantaly, Adenanthera pavonina, Pongamia pinnata, Spathodea campanulata, Melaleuca leucadendra, Magnolia denudate, Pterocarpus indicus, Phoebe faberi, Michelia figo, Mangifera indica, Araucaria cunninghamii, Tabebuia impetiginosa, Machilus zuihoensis Hayata, Saraca asoca, Alstonia scholaris, Liquidambar formosana Hance, Acer, Cinnamomum camphora, Mangifera indica, Bauhinia blakeana, and Terminalia catappa |
Crown diameters between 3 and 5 m | Macaranga tanarius, Pithecellobium dulce, Cassia fistula, Chamaecyparis obtusa, Chorisia speciosa, Bischofia javanica Blume, Melia azedarach, Swietenia mahagoni, Calocedrus formosana, Hyophorbe verschaffeltii, Sterculia foetida, Pistacia chinensis, Elaeocarpus sylvestris, Pinus jeffreyi, Cocos nucifera, Syzygium samarangense, Juniperus chinensis, Dimocarpus longan, Barringtonia racemosa, Artocarpus altilis, and Codiaeum variegatum |
Crown diameters smaller than 3 m | Lagerstroemia subcostata, Gordonia axillaris, Caryota urens, Carica papaya, Calocedrus formosana, Fraxinus griffithii, Hibiscus rosa-sinensis, Podocarpus nagi, Washingtonia robusta, Bambusa vulgaris Schrad, Duranta erecta, Salix babylonica, Ficus benjamina, Zanthoxylum piperitum, Cananga odorata, Strelitzia nicolai, Michelia compressa, Triadica sebifera, Hyophorbe lagenicaulis, Pachira aquatica, Lantana camara, Prunus mume, Sapindus, Lagerstroemia speciosa, Ficus religiosa, Aucuba japonica, Erythrina variegate, Chrysalidocarpus lutescens, Allamanda schottii, Broussonetia papyrifera, Garcinia subelliptica Merr., Plumeria alba, Aglaia odorata, Elaeocarpus serratus Linn., Agave americana, Phoenix roebelenii, and Euphorbia splendens |
Site a | Fish-Eye Lens | SVF | Plant Species * |
---|---|---|---|
A1 | 0.611 | Ficus religiosa, Adenanthera pavonina, Roystonea regia, Pterocarpus indicus, Cinnamomum camphora, Artocarpus altilis, Juniperus chinensis, Liquidambar formosana Hance, and Lagerstroemia speciose | |
A2 | 0.637 | Chorisia speciosa, Hibiscus tiliaceus, Allamanda schottii, Peltophorum pterocarpum, and Ficusmicrocarpa | |
A3 | 0.544 | Cinnamomum camphora, Chamaecyparis obtusa, Juniperus chinensis, Lagerstroemia speciosa, and Swietenia mahagoni | |
B1 | 0.419 | Bauhinia blakeana, Tabebuia impetiginosa, Alstonia scholaris, Delonix regia, Ficus microcarpa, Spathodea campanulata, and Terminalia catappa | |
B2 | 0.420 | Garcinia subelliptica Merr., Ficus benjamina, Peltophorum pterocarpum, Liquidambar formosana Hance, Juniperus chinensis, Euphorbia splendens, Magnolia denudata, Ficus microcarpa, and Lagerstroemia speciose | |
B3 | 0.411 | Pterocarpus indicus, Ficus microcarpa, Delonixregia, Calocedrus formosana, Roystonea regia, Fraxinus griffithii, Chorisia speciosa, Cinnamomum camphora, Spathodea campanulata, Adenanthera pavonina, Pterocarpus indicus, Magnolia denudata, and Cassia fistula | |
C1 | 0.047 | Lagerstroemia speciosa, Cinnamomum camphora, Michelia figo, Acer, Alstonia scholaris, Cinnamomum camphora, Chamaecyparis obtusa, Juniperus chinensis, Spathodea campanulata, Adenanthera pavonina, and Pterocarpus indicus | |
C2 | 0.075 | Lagerstroemia speciosa, Peltophorum pterocarpum, Acer, Delonix regia, Alstonia scholaris, Haematoxylum campechianum, Bauhinia blakeana, and Roystonea regia | |
C3 | 0.065 | Pachira macrocarpa, Elaeocarpus serratus Linn., Terminalia catappa, Ficus religiosa, Lagerstroemia subcostata, Araucaria cunninghamii, Pithecellobium dulce, Chrysalidocarpus lutescens, Roystonea regia, Peltophorum pterocarpum, Caryota urens, Chrysalidocarpus lutescens, Liquidambar formosana Hance, Sapindus, Ficus microcarpa, Peltophorum pterocarpum, and Lagerstroemia speciose | |
D1 | 0.025 | Tectona grandis, Delonix regia, Alstonia scholaris, Bischofia javanica Blume, Swietenia mahagoni, Pistacia chinensis, Elaeocarpus serratus Linn., and Terminalia catappa | |
D2 | 0.059 | Chrysalidocarpus lutescens, Peltophorum pterocarpum, Ficus microcarpa, Michelia compressa, Mangifera indica, Pongamia pinnata, Araucaria heterophylla, Swietenia mahagoni, and Liquidambar formosana Hance | |
D3 | 0.138 | Cassia fistula, Pithecellobium dulce, Pongamia pinnata, and Pistacia chinensis |
Group * | Plant Species |
---|---|
A | Ficus microcarpa |
B | Delonix regia, and Terminalia catappa |
C | Juniperus chinensis, Bischofia javanica Blume, and Chamaecyparis taiwanensis |
D | Michelia figo, Acer, Spathodea campanulata, Cinnamomum camphora, Liquidambar formosana, Araucaria cunninghamii, and Pistacia chinensis |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-H.; Tsai, K.-T. Screening of Tree Species for Improving Outdoor Human Thermal Comfort in a Taiwanese City. Sustainability 2017, 9, 340. https://doi.org/10.3390/su9030340
Lin Y-H, Tsai K-T. Screening of Tree Species for Improving Outdoor Human Thermal Comfort in a Taiwanese City. Sustainability. 2017; 9(3):340. https://doi.org/10.3390/su9030340
Chicago/Turabian StyleLin, Yu-Hao, and Kang-Ting Tsai. 2017. "Screening of Tree Species for Improving Outdoor Human Thermal Comfort in a Taiwanese City" Sustainability 9, no. 3: 340. https://doi.org/10.3390/su9030340
APA StyleLin, Y. -H., & Tsai, K. -T. (2017). Screening of Tree Species for Improving Outdoor Human Thermal Comfort in a Taiwanese City. Sustainability, 9(3), 340. https://doi.org/10.3390/su9030340