Modeling the Movement of Septic Water Chloride through a Soil Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Preliminary Tests
2.3. Physical Model Design
2.3.1. Design of Model Frame
2.3.2. Design of Model Walls
2.3.3. Design of Sampling Ports
2.3.4. Installation of Piezometers
2.3.5. Design of Septic Tanks
2.3.6. Design of Draining Filter
2.3.7. Modification of Packing Material
2.3.8. Homogeneity of Model Packing
2.3.9. Model Draining Process
2.3.10. Model Running Process
2.3.11. Methods of Analysis
3. Results
4. Development of Models
4.1. Logistic Regression Models
4.2. Logarithmic Models
5. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Groundwater Protection. Principles and Practice (GP3); version 1.1; Environment Agency Horizon House: Bristol, UK, 2013.
- Tazioli, A.; Conversini, P.; Peccerillo, A. Hydrogeological and geochemical characterisation of the Rock of Orvieto. Environ. Earth Sci. 2012, 66, 55–65. [Google Scholar] [CrossRef]
- Comodi, G.; Cioccolanti, L.; Palpacelli, S.; Tazioli, A.; Nanni, T. Distributed generation and water production: A study for a region in central Italy. Desalination Water Treat. 2011, 31, 218–225. [Google Scholar] [CrossRef]
- Cervi, F.; Ronchetti, F.; Doveri, M.; Mussi, M.; Marcaccio, M.; Tazioli, A. The use of stable water isotopes from rain gauges network to define the recharge areas of springs: Problems and possible solutions from case studies from the northern Apennines. Geoing. Ambient. Miner. 2016, 149, 19–26. [Google Scholar]
- Holland, J.P.; Asce, A.M. Development of a Comprehensive Modeling System for Remediation of Contaminated Groundwater. In Proceedings of the Hydraulic Engineering sessions at Water Forum, Baltimore, MD, USA, 2–6 August 1992. [Google Scholar]
- Yates, M.V. Septic Tank Density and Groundwater Contamination. Groundwater 1985, 23, 586–591. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). EPA/600/P-95/002F a-c Exposure Factors Handbook; Final Report; U.S. Environmental Protection Agency: Washington, DC, USA, 1997.
- Humphrey, M.D. Experimental Design of Physical Aquifer Models for Evaluation of Groundwater Remediation Strategies. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 1992. [Google Scholar]
- Ojuri, O.O.; Ola, S.A. Estimation of contaminant transport parameters for a tropical sand in a sand tank model. Int. J. Environ. Sci. Technol. 2010, 7, 385–394. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Colombani, N.; Palpacelli, S.; Castaldelli, G. Large tank experiment on nitrate fate and transport: The role of permeability distribution. Environ. Earth Sci. 2011, 63, 903–914. [Google Scholar] [CrossRef]
- Aquilanti, L.; Clementi, F.; Landolfo, S.; Nanni, T.; Palpacelli, S.; Tazioli, A. A DNA tracer used in column tests for hydrogeology applications. Environ. Earth Sci. 2013, 70, 3143–3154. [Google Scholar] [CrossRef]
- Tazioli, A.; Palpacelli, S. Best tracer selection for hydrogeological investigations: Preliminary results from laboratory test. Ital. J. Groundw. 2013, 2, 7–12. [Google Scholar] [CrossRef]
- Davis, S.N.; Thompson, G.M.; Bentley, H.W.; Stiles, G. Ground-Water Tracers-A Short Review. Groundwater 1980, 18, 14–23. [Google Scholar] [CrossRef]
- Kanwar, R.S. Use of Tracers and Dyes to Assess Groundwater Contamination Potential for Glacial Till Aquifers. In Water-Quality Hydrology; Springer: Dordrecht, The Netherlands, 1996; pp. 177–186. [Google Scholar]
- Mc Quillan, D. Groundwater quality impacts from on-site septic systems. In Proceedings of the 13th Annual Conference on National Onsite Wastewater Recycling Association, Albuquerque, NM, USA, 7–10 November 2004; pp. 6–18. [Google Scholar]
- Mustafa, Y.T.; Ali, R.T.; Saleh, R.M. Monitoring and evaluating land cover change in the Duhok city, Kurdistan region-Iraq, by using remote sensing and GIS. Int. J. Eng. Invent. 2012, 1, 28–33. [Google Scholar]
- Aqrawi, Z.A. Hydrological and Hydrogeological Study of the Etot-Aloka Basin, Dohuk Governorate (Iraq-Kurdistan Region). Ph.D. Dissertation, University of Salahaddin, Erbil, Iraq, 2003. [Google Scholar]
- Eaton, A.D.; Clesceri, L.S.; Greenberg, A.E.; Franson, M.A.H. Standard Method for Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Das, B.M. Advanced Soil Mechanics, 3rd ed.; Taylor and Francis: New York, NY, USA, 2008; pp. 248–250. [Google Scholar]
- Ministry of Agriculture and Food, British Columbia Agriculture Council. Drainage Factsheet No. 541, Drain Filter and Envelopes; Ministry of Agriculture and Food, British Columbia Agriculture Council: Abbotsford, BC, Canada, 2000.
- Bertram, G.E. An Experimental Investigation of Protective Filters; Soil Mechanics Series No. 7, Publication Number 267; Graduate School of Engineering, Harvard University: Cambridge, MA, USA, 1940. [Google Scholar]
- Sherman, W.C. Filter Experiments and Design Criteria; Technical Memorandum, No. 3; U.S. Army Corps of Engineers, Army Engineer Water Ways Experiment Station: Vicksburg, MS, USA, 1953. [Google Scholar]
- Kochary, S.A. The Impact of Septic Tanks on the Contamination of Groundwater in Upper Aquifer of Duhok City. Ph.D. Dissertation, University of Duhok, Kurdistan Region, Iraq, 2017. [Google Scholar]
- United States Environmental Protection Agency. EPA 816-F-09-004 Drinking Water Contaminants: National Primary and Secondary Drinking Water Regulations; U.S. EPA: Washington, DC, USA, 2009.
Days | Port A | Port B | Port C | Port D | Port E | Port F | Port G | Port H |
---|---|---|---|---|---|---|---|---|
0 | 42.6 | 46.2 | 32 | 56.8 | 46.2 | 35.5 | 39.1 | 39.05 |
7 | 376 | 362 | 160 | 85.2 | 42.6 | 42.6 | 39.1 | 39.05 |
14 | 373 | 337 | 252 | 131 | 92.3 | 49.7 | 32 | 49.7 |
21 | 426 | 383 | 266 | 170 | 121 | 60.4 | 53.3 | 71 |
28 | 355 | 295 | 206 | 135 | 85.2 | 56.8 | 63.9 | 85.2 |
35 | 327 | 284 | 217 | 163 | 107 | 92.3 | 85.2 | 63.9 |
42 | 327 | 348 | 227 | 206 | 192 | 92.3 | 63.9 | 85.2 |
49 | 362 | 362 | 298 | 277 | 227 | 135 | 85.2 | 92.3 |
56 | 355 | 334 | 305 | 291 | 241 | 135 | 85.2 | 99.4 |
63 | 334 | 348 | 319 | 298 | 256 | 178 | 107 | 99.4 |
70 | 362 | 312 | 341 | 284 | 270 | 206 | 114 | 114 |
77 | 383 | 341 | 334 | 305 | 277 | 213 | 156 | 135 |
84 | 369 | 362 | 327 | 383 | 305 | 227 | 156 | 149 |
91 | 376 | 362 | 355 | 376 | 362 | 263 | 178 | 135 |
Port | Mean | Logistic Modeling Confidence | RMSE | SD | Mean | Logarithmic Modeling Confidence | RMSE | SD |
---|---|---|---|---|---|---|---|---|
A | 333.97 | 95% | 20.67 | 19.71 | 326.60 | 95% | 22.82 | 20.08 |
B | 319.75 | 95% | 30.08 | 28.8 | 308.53 | 95% | 22.77 | 28.5 |
C | 267.62 | 95% | 54.36 | 51.83 | 259.91 | 95% | 32.17 | 60.94 |
D | 200.28 | 95% | 45.57 | 80.27 | 225.93 | 95% | 55.77 | 96.35 |
E | 163.00 | 95% | 55.41 | 85.63 | 202.65 | 95% | 50.58 | 96.59 |
F | 107.98 | 95% | 26.29 | 62.83 | 134.63 | 95% | 37.33 | 75.76 |
G | 69.71 | 95% | 10.39 | 27.1 | 109.34 | 90% | 19.96 | 40.75 |
H | 76.16 | 95% | 9.71 | 23.62 | 108.08 | 90% | 8.74 | 27.45 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochary, S.; Byl, T.; Noori, B. Modeling the Movement of Septic Water Chloride through a Soil Profile. Sustainability 2017, 9, 501. https://doi.org/10.3390/su9040501
Kochary S, Byl T, Noori B. Modeling the Movement of Septic Water Chloride through a Soil Profile. Sustainability. 2017; 9(4):501. https://doi.org/10.3390/su9040501
Chicago/Turabian StyleKochary, Shawkat, Tom Byl, and Bahzad Noori. 2017. "Modeling the Movement of Septic Water Chloride through a Soil Profile" Sustainability 9, no. 4: 501. https://doi.org/10.3390/su9040501
APA StyleKochary, S., Byl, T., & Noori, B. (2017). Modeling the Movement of Septic Water Chloride through a Soil Profile. Sustainability, 9(4), 501. https://doi.org/10.3390/su9040501