Comparison of Organic and Integrated Nutrient Management Strategies for Reducing Soil N2O Emissions
Abstract
:1. Introduction
2. Effect of Organic vs. Inorganic N Sources on N2O Emissions
2.1. Summary of Research
2.2. Mechanisms Controlling N2O Emissions
2.2.1. Soil Organic Carbon
2.2.2. Soil Aggregation, Drainage, and Moisture
2.2.3. Soil pH
2.2.4. Soil N Availability
3. INM and N2O Emissions
3.1. Summary of Field Research
3.2. Potential for Minimizing N2O Emissions with INM
4. Knowledge Gaps and Additional Considerations
4.1. Knowledge Gaps for Field Research
4.2. Yield-Scaled Emissions and INM
4.3. Net Global Warming Potential
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Galloway, J.; Aber, J.D.; Erisman, J.W.; Seitzinger, S.P.; Howarth, R.W.; Cowling, E.B.; Cosby, B.J. The Nitrogen Cascade. Bioscience 2003, 53, 341–356. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Glob. Biogeochem. Cycles 2002, 16. [Google Scholar] [CrossRef]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Davidson, E.A.; Kanter, D. Inventories and scenarios of nitrous oxide emissions. Environ. Res. Lett. 2014, 9, 105012. [Google Scholar] [CrossRef]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (US EPA). Draft Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2010; U.S. Environmental Protection Agency: Washington, DC, USA, 2012.
- Birkhofer, K.; Bezemer, T.M.; Bloem, J.; Bonkowski, M.; Christensen, S.; Dubois, D.; Ekelund, F.; Fließbach, A.; Gunst, L.; Hedlund, K.; et al. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biol. Biochem. 2008, 40, 2297–2308. [Google Scholar] [CrossRef]
- Wortman, S.E.; Drijber, R.A.; Francis, C.A.; Lindquist, J.L. Arable weeds, cover crops, and tillage drive soil microbial community composition in organic cropping systems. Appl. Soil Ecol. 2013, 72, 232–241. [Google Scholar] [CrossRef]
- Wortman, S.E.; Galusha, T.D.; Mason, S.C.; Francis, C.A. Soil fertility and crop yields in long-term organic and conventional cropping systems in Eastern Nebraska. Renew. Agric. Food Syst. 2012, 27, 200–216. [Google Scholar] [CrossRef]
- Janssen, B.H. Integrated nutrient management: The use of organic and mineral fertilizers. In The Role of Plant Nutrients for Sustainable Food Crop Production in Sub-Saharan Africa; van Reuler, H., Prins, W.H., Eds.; VKP: Leidschendam, The Netherlands, 1993; pp. 89–105. [Google Scholar]
- Wu, W.; Ma, B. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review. Sci. Total Environ. 2015, 512–513, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Vanlauwe, B.; Kihara, J.; Chivenge, P.; Pypers, P.; Coe, R.; Six, J. Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant Soil 2011, 339, 35–50. [Google Scholar] [CrossRef]
- Chivenge, P.; Vanlauwe, B.; Six, J. Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant Soil 2011, 342, 1–30. [Google Scholar] [CrossRef]
- Mondal, S.; Mallikarjun, M.; Ghosh, M.; Ghosh, D.C.; Timsina, J. Influence of integrated nutrient management (INM) on nutrient use efficiency, soil fertility and productivity of hybrid rice. Arch. Agron. Soil Sci. 2016, 62, 1521–1529. [Google Scholar] [CrossRef]
- Javaria, S.; Khan, M.Q. Impact of integrated nutrient management on tomato yield quality and soil environment. J. Plant Nutr. 2010, 34, 140–149. [Google Scholar] [CrossRef]
- Roberts, T.L. Improving nutrient use efficiency. Turk. J. Agric. For. 2008, 32, 177–182. [Google Scholar]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef] [PubMed]
- Nyamadzawo, G.; Wuta, M.; Nyamangara, J.; Smith, J.L.; Rees, R.M. Nitrous oxide and methane emissions from cultivated seasonal wetland (dambo) soils with inorganic, organic and integrated nutrient management. Nutr. Cycl. Agroecosyst. 2014, 100, 161–175. [Google Scholar] [CrossRef]
- Ding, W.; Luo, J.; Li, J.; Yu, H.; Fan, J.; Liu, D. Effect of long-term compost and inorganic fertilizer application on background N2O and fertilizer-induced N2O emissions from an intensively cultivated soil. Sci. Total Environ. 2013, 465, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Abalos, D.; Jeffery, S.; Drury, C.F.; Wagner-Riddle, C. Improving fertilizer management in the U.S. and Canada for N2O mitigation: Understanding potential positive and negative side-effects on corn yields. Agric. Ecosyst. Environ. 2016, 221, 214–221. [Google Scholar] [CrossRef]
- Decock, C. Mitigating Nitrous Oxide Emissions from Corn Cropping Systems in the Midwestern U.S.: Potential and Data Gaps. Environ. Sci. Technol. 2014, 48, 4247–4256. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, E.; Lassaletta, L.; Sanz-Cobena, A.; Garnier, J.; Vallejo, A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agric. Ecosyst. Environ. 2013, 164, 32–52. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts?—A meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Skinner, C.; Gattinger, A.; Muller, A.; Mäder, P.; Flieβbach, A.; Stolze, M.; Ruser, R.; Niggli, U. Greenhouse gas fluxes from agricultural soils under organic and non-organic management—A global meta-analysis. Sci. Total Environ. 2014, 468–469, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Mader, P. Soil Fertility and Biodiversity in Organic Farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
- Shcherbak, I.; Millar, N.; Robertson, G.P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef] [PubMed]
- Millar, N.; Robertson, G.P.; Grace, P.R.; Gehl, R.J.; Hoben, J.P. Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (Maize) production: An emissions reduction protocol for US Midwest agriculture. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 185–204. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Snyder, C.; Davidson, E.; Smith, P.; Venterea, R. Agriculture: Sustainable crop and animal production to help mitigate nitrous oxide emissions. Curr. Opin. Environ. Sustain. 2014, 9–10, 46–54. [Google Scholar] [CrossRef]
- Venterea, R.T.; Coulter, J.A.; Dolan, M.S. Evaluation of Intensive “4R” Strategies for Decreasing Nitrous Oxide Emissions and Nitrogen Surplus in Rainfed Corn. J. Environ. Qual. 2016, 45, 1186. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, A.F. Land use related sources of greenhouse gases: Present emissions and possible future trends. Land Use Policy 1990, 7, 154–164. [Google Scholar] [CrossRef]
- Hu, H.-W.; Chen, D.; He, J.-Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 2015, 39, 729–749. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, J.L.; Chatterjee, A.; Clay, D. Soil and Nitrogen Management to Reduce Nitrous Oxide Emissions. In ACSESS Publications; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.: Madison, WI, USA, 2016. [Google Scholar]
- Thangarajan, R.; Bolan, N.S.; Tian, G.; Naidu, R.; Kunhikrishnan, A. Role of organic amendment application on greenhouse gas emission from soil. Sci. Total Environ. 2013, 465, 72–96. [Google Scholar] [CrossRef] [PubMed]
- Baggs, E.M. Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and future direction. Curr. Opin. Environ. Sustain. 2011, 3, 321–327. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.J.; Giannopoulos, G.; Pretty, J.; Baggs, E.M.; Richardson, D.J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1157–1168. [Google Scholar] [CrossRef] [PubMed]
- Weier, K.L.; Doran, J.W.; Power, J.F.; Walters, D.T. Denitrification and the Dinitrogen/Nitrous Oxide Ratio as Affected by Soil Water, Available Carbon, and Nitrate. Soil Sci. Soc. Am. J. 1993, 57, 66–72. [Google Scholar] [CrossRef]
- Jäger, N.; Stange, C.F.; Ludwig, B.; Flessa, H. Emission rates of N2O and CO2 from soils with different organic matter content from three long-term fertilization experiments—A laboratory study. Biol. Fertil. Soils 2011, 47, 483–494. [Google Scholar] [CrossRef]
- Bhogal, A.; Nicholson, F.A.; Young, I.; Sturrock, C.; Whitmore, A.P.; Chambers, B.J. Effects of recent and accumulated livestock manure carbon additions on soil fertility and quality. Eur. J. Soil Sci. 2011, 62, 174–181. [Google Scholar] [CrossRef]
- Graham, C.J.; van Es, H.M.; Melkonian, J.J. Nitrous oxide emissions are greater in silt loam soils with a legacy of manure application than without. Biol. Fertil. Soils 2013, 49, 1123–1129. [Google Scholar] [CrossRef]
- Fontaine, S.; Mariotti, A.; Abbadie, L. The priming effect of organic matter: A question of microbial competition? Soil Biol. Biochem. 2003, 35, 837–843. [Google Scholar] [CrossRef]
- Mikha, M.M.; Rice, C.W.; Milliken, G.A. Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biol. Biochem. 2005, 37, 339–347. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, J.-B.; Wang, J.; Cai, Z.-C.; Wang, S.-Q. Soil pH is a good predictor of the dominating N2O production processes under aerobic conditions. J. Plant Nutr. Soil Sci. 2015, 178, 370–373. [Google Scholar] [CrossRef]
- McSwiney, C.P.; Robertson, G.P. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Glob. Chang. Biol. 2005, 11, 1712–1719. [Google Scholar] [CrossRef]
- Mulvaney, R.L.; Khan, S.A.; Mulvaney, C.S. Nitrogen fertilizers promote denitrification. Biol. Fertil. Soils 1997, 24, 211–220. [Google Scholar] [CrossRef]
- Doran, J.W.; Fraser, D.G.; Culik, M.N.; Liebhardt, W.C. Influence of alternative and conventional agricultural management on soil microbial processes and nitrogen availability. Am. J. Altern. Agric. 1987, 2, 99. [Google Scholar] [CrossRef]
- Poudel, D.D.; Horwath, W.R.; Mitchell, J.P.; Temple, S.R. Impacts of cropping systems on soil nitrogen storage and loss. Agric. Syst. 2001, 68, 253–268. [Google Scholar] [CrossRef]
- Charles, A.; Rochette, P.; Whalen, J.K.; Angers, D.A.; Chantigny, M.H.; Bertrand, N. Global nitrous oxide emission factors from agricultural soils after addition of organic amendments: A meta-analysis. Agric. Ecosyst. Environ. 2017, 236, 88–98. [Google Scholar] [CrossRef]
- Meng, L.; Ding, W.; Cai, Z. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. Soil Biol. Biochem. 2005, 37, 2037–2045. [Google Scholar] [CrossRef]
- Cai, Y.; Ding, W.; Luo, J. Nitrous oxide emissions from Chinese maize-wheat rotation systems: A 3-year field measurement. Atmos. Environ. 2013, 65, 112–122. [Google Scholar] [CrossRef]
- Nyamadzawo, G.; Shi, Y.; Chirinda, N.; Olesen, J.E.; Mapanda, F.; Wuta, M.; Wu, W.; Meng, F.; Oelofse, M.; de Neergaard, A.; et al. Combining organic and inorganic nitrogen fertilisation reduces N2O emissions from cereal crops: A comparative analysis of China and Zimbabwe. Mitig. Adapt. Strateg. Glob. Chang. 2014, 22, 233–245. [Google Scholar] [CrossRef]
- Sarkodie-Addo, J.; Lee, H.G.; Braggs, E.M. Nitrous oxide emissions after application of inorganic fertilizer and incorporation of green manure residues. Soil Use Manag. 2003, 19, 331–339. [Google Scholar] [CrossRef]
- Frimpong, K.A.; Baggs, E.M. Do combined applications of crop residues and inorganic fertilizer lower emission of N2O from soil?: N2O from combined residue and fertilizer application. Soil Use Manag. 2010, 26, 412–424. [Google Scholar] [CrossRef]
- Dittert, K.; Lampe, C.; Gasche, R.; Butterbach-Bahl, K.; Wachendorf, M.; Papen, H.; Sattelmacher, B.; Taube, F. Short-term effects of single or combined application of mineral N fertilizer and cattle slurry on the fluxes of radiatively active trace gases from grassland soil. Soil Biol. Biochem. 2005, 37, 1665–1674. [Google Scholar] [CrossRef]
- Tang, J.-C.; Maie, N.; Tada, Y.; Katayama, A. Characterization of the maturing process of cattle manure compost. Process Biochem. 2006, 41, 380–389. [Google Scholar] [CrossRef]
- Hoge, A.; Robinson, D.; Fitter, A. Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci. 2000, 5, 304–308. [Google Scholar] [CrossRef]
- Senbayram, M.; Chen, R.; Budai, A.; Bakken, L.; Dittert, K. N2O emission and the N2O/(N2O + N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agric. Ecosyst. Environ. 2012, 147, 4–12. [Google Scholar] [CrossRef]
- Zhu-Barker, X.; Doane, T.A.; Horwath, W.R. Role of green waste compost in the production of N2O from agricultural soils. Soil Biol. Biochem. 2015, 83, 57–65. [Google Scholar] [CrossRef]
- Huang, Y.; Zou, J.; Zheng, X.; Wang, Y.; Xu, X. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biol. Biochem. 2004, 36, 973–981. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Velthof, G.L.; Oenema, O.; Van Groenigen, K.J.; Van Kessel, C. Towards an agronomic assessment of N2O emissions: A case study for arable crops. Eur. J. Soil Sci. 2010, 61, 903–913. [Google Scholar] [CrossRef]
- Mondelaers, K.; Aertsens, J.; Van Huylenbroeck, G. A meta-analysis of the differences in environmental impacts between organic and conventional farming. Br. Food J. 2009, 111, 1098–1119. [Google Scholar] [CrossRef]
- De Ponti, T.; Rijk, B.; van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Robertson, G.P. Greenhouse Gases in Intensive Agriculture: Contributions of Individual Gases to the Radiative Forcing of the Atmosphere. Science 2000, 289, 1922–1925. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.L.; Eberwein, J.R.; Allsman, L.A.; Grantz, D.A.; Jenerette, G.D. Regulation of CO2 and N2O fluxes by coupled carbon and nitrogen availability. Environ. Res. Lett. 2015, 10, 34008. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, C.; Chai, Q.; Lemke, R.L.; Campbell, C.A.; Zentner, R.P. Improving farming practices reduces the carbon footprint of spring wheat production. Nat. Commun. 2014, 5, 5012. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, W.H. On fertilizer-induced soil carbon sequestration in China’s croplands. Glob. Chang. Biol. 2010, 16, 849–850. [Google Scholar] [CrossRef]
Study | Country | Crop Rotation | Total N Rate (kg N ha−1) | Mean N2O (mg N m−2) | EF * (%) | C:N of Org † | N2O Trend | INM Yield |
---|---|---|---|---|---|---|---|---|
Meng et al. (2005) [50] | China | Maize, winter wheat | Org: 150 MC # Inorg ‡: 150 urea INM: 75 kg MC + 75 urea (150 total INM) | Control: 15 Org †: 85.6 INM: 81.8 Inorg ‡: 76.7 | Org: 0.471 INM: 0.445 Inorg: 0.411 | 7.75 | No significant differences | Not reported |
Nyamadzawo et al. (2014) [18] | Zimbabwe | Rape | Org: 97.5 M § Inorg: 120 NH4NO3 INM: 65 M + 60 NH4NO3 (125 total INM) | Control: 250 Org: 1930 INM: 770 Inorg: 1200 | Org: 17.231 INM: 4.160 Inorg: 7.917 | Not reported | INM < Org, Inorg | Org, Inorg < INM |
Cai et al. (2013) [51] | China | Maize, winter wheat | Org: 150 MC ‖ Inorg: 150 urea INM: 75 MC + 75 urea (150 total INM) | Control: 22 Org: 166 INM: 118 Inorg: 181 | Org: 0.960 INM: 0.640 Inorg: 1.060 | 8 | No significant differences | Not reported |
Ding et al. (2013) [19] | China | Maize, winter wheat | Org: 150 MC Inorg: 150 urea INM: 75 MC + 75 kg urea (150 total INM) | Control: 20.4 Org: 117.8 INM: 132.5 Inorg: 142.7 | Org: 0.812 INM: 0.934 Inorg: 1.019 | 8 | INM, Org < Inorg | Not reported |
Nyamadzawo et al. (2014) [52] | Zimbabwe | Maize, winter wheat | Org: 120 M Inorg: 120 NH4NO3 INM: 60 M + 60 NH4NO3 (120 total INM) | Control: 32 Org: 27 INM: 35 Inorg: 41 | Org: −0.042 INM: 0.025 Inorg: 0.075 | Not reported | Org < INM < Inorg | Org < INM, Inorg |
Sarkodie-Addo et al. (2003) [53] | United Kingdom | Maize | Org: Inc ¶ rye Inorg: 250 NH4NO3 INM: Inc rye + 250 NH4NO3 | Rye Control: 6.07 Org: 5.27 INM: 9.15 Inorg: 7.72 | N/A | Rye: 13 Wheat: 18 | Org, Inorg < INM Rye < winter wheat | Org < INM < Inorg |
Org: Inc winter wheat Inorg: 200 NH4NO3 INM: Inc winter wheat + 200 NH4NO3 | Winter Wheat Control: 2.65 Org: 2.32 INM: 15.4 Inorg: 8.87 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graham, R.F.; Wortman, S.E.; Pittelkow, C.M. Comparison of Organic and Integrated Nutrient Management Strategies for Reducing Soil N2O Emissions. Sustainability 2017, 9, 510. https://doi.org/10.3390/su9040510
Graham RF, Wortman SE, Pittelkow CM. Comparison of Organic and Integrated Nutrient Management Strategies for Reducing Soil N2O Emissions. Sustainability. 2017; 9(4):510. https://doi.org/10.3390/su9040510
Chicago/Turabian StyleGraham, Rebecca F., Sam E. Wortman, and Cameron M. Pittelkow. 2017. "Comparison of Organic and Integrated Nutrient Management Strategies for Reducing Soil N2O Emissions" Sustainability 9, no. 4: 510. https://doi.org/10.3390/su9040510
APA StyleGraham, R. F., Wortman, S. E., & Pittelkow, C. M. (2017). Comparison of Organic and Integrated Nutrient Management Strategies for Reducing Soil N2O Emissions. Sustainability, 9(4), 510. https://doi.org/10.3390/su9040510