Mitigating Supply Chain Risk via Sustainability Using Big Data Analytics: Evidence from the Manufacturing Supply Chain
Abstract
:1. Introduction
2. Review of Literature
2.1. Big Data Analytics and Supply Chain Management
2.2. Big Data Analytics and Sustainable Supply Chain Management
2.3. Big Data Analytics and Risk Mitigation
2.4. Theoretical Background
3. Methodology
3.1. Data Collection
3.2. Indian Logistical Industry
3.3. Big Data Integration and SUMUL
4. Results and Analysis
5. Discussions and Implications
6. Conclusions and Future Research
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wood, D.J. Corporate social performance revisited. Acad. Manag. Rev. 1991, 16, 691–718. [Google Scholar]
- Mani, V.; Agrawal, R.; Gunasekaran, A.; Papadopoulos, T.; Dubey, R.; Childe, S. Social sustainability in the supply chain: Construct development and measurement validation. Ecol. Indic. 2016, 71, 270–279. [Google Scholar] [CrossRef]
- Mani, V.; Gunasekaran, A.; Papadopoulos, T.; Benjamin, H.; Dubey, R. Supply Chain Social Sustainability for Developing Nations: Evidence from India. Resour. Conserv. Recycl. 2016, 111, 42–52. [Google Scholar] [CrossRef]
- Ketchen, D.J., Jr.; Hult, G.T.M. Bridging organization theory and supply chain management: The case of best value supply chains. J. Oper. Manag. 2007, 25, 573–580. [Google Scholar]
- Slone, R.E. Leading a supply chain turn around. Harv. Bus. Rev. 2004, 82, 114–121. [Google Scholar] [PubMed]
- Whipple, J.M.; Frankel, R. Strategic alliance success factors. J. Supply Chain Manag. 2000, 36, 21–28. [Google Scholar] [CrossRef]
- Zacharia, Z.G.; Sanders, N.R.; Nix, N.W. The emerging role of the third-party logistics provider (3PL) as an orchestrator. J. Bus. Logist. 2011, 32, 40–54. [Google Scholar] [CrossRef]
- Davenport, T.H. Competing on analytics. Harv. Bus. Rev. 2006, 84, 84–93. [Google Scholar]
- Chae, B.; Olson, D. Business analytics for supply chain: A dynamic-capabilities frame work. Int. J. Inf. Technol. Decis. Mak. 2013, 12, 9–26. [Google Scholar] [CrossRef]
- Hazen, B.T.; Boone, C.A.; Ezell, J.D.; Jones-Farmer, L.A. Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. Int. J. Prod. Econ. 2014, 154, 72–80. [Google Scholar] [CrossRef]
- Trkman, P.; McCormack, K.; de Oliveira, M.P.V.; Ladeira, M.B. The impact of business analytics on supply chain performance. Decis. Support Syst. 2010, 49, 318–327. [Google Scholar] [CrossRef]
- Keeso, A. Big Data and Environmental Sustainability: A Conversation Starter; Smith School Working Paper Series; Working Paper 14-04; Smith School of Enterprise and the Environment, University of Oxford: Oxford, UK, 2014; Available online: http://www.smithschool.ox.ac.uk/library/workingpapers/workingpaper%2014-04.pdf (accessed on 7 May 2015).
- Chen, L.; Olhager, J.; Tang, O. Manufacturing facility location and sustain- ability: A literature review and research agenda. Int. J. Prod. Econ. 2014, 149, 154–163. [Google Scholar] [CrossRef]
- Giannakis, M. The intellectual structure of the supply chain management discipline: A citation and social network analysis. J. Enterp. Inf. Manag. 2012, 25, 136–169. [Google Scholar] [CrossRef]
- Seuring, S.; Müller, M. From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 2008, 16, 1699–1710. [Google Scholar] [CrossRef]
- Simon, H.A. Administrative Behavior; Free Press: New York, NY, USA, 1965. [Google Scholar]
- Grant, R.M. Prospering in dynamically-competitive environments: Organizational capability as knowledge integration. Organ. Sci. 1996, 7, 375–387. [Google Scholar] [CrossRef]
- Grant, R.M. Toward a knowledge-based theory of the firm. Strateg. Manag. J. 1996, 17, 109–122. [Google Scholar] [CrossRef]
- Huber, G.P. Organizational learning: The contributing processes and literatures. Organ. Sci. 1991, 2, 71–87. [Google Scholar] [CrossRef]
- Levitt, B.; March, J.G. Organizational learning. Annu. Rev. Sociol. 1988, 14, 319–340. [Google Scholar] [CrossRef]
- Jelinek, M.; Bergey, P. Innovation as the strategic driver of sustainability: Big data knowledge for profit and survival. IEEE Eng. Manag. Rev. 2013, 41, 14–22. [Google Scholar] [CrossRef]
- Manyika, J.; Sinclair, J.; Dobbs, R.; Strube, G.; Rassey, L.; Mischke, J.; Remes, J.; Roxburg, C.; George, K.; O’Halloran, D.; et al. Manufacturing the Future: The Next Era of Global Growth and Innovation. 2012, pp. 1–184. Available online: http://www.mckinsey.com/business-functions/operations/our-insights/the-future-of-manufacturing (accessed on 22 July 2016).
- Hazen, B.T.; Sankar, C. Cross-border process innovations: Improving the fit between information processing needs and capabilities. Int. J. Innov. Technolo. Manag. 2015, 12, 1–26. [Google Scholar] [CrossRef]
- Chopra, S.; Sodhi, M. Reducing the risk of supply chain disruptions. MIT Sloan Manag. Rev. 2014, 55, 72–80. [Google Scholar]
- Tang, O.; Nurmaya Musa, S. Identifying risk issues and research advancements in supply chain risk management. Int. J. Prod. Econ. 2011, 133, 25–34. [Google Scholar] [CrossRef]
- Klassen, R.D.; Vereecke, A. Social issues in supply chains: Capabilities link responsibility, risk (opportunity), and performance. Int. J. Prod. Econ. 2012, 140, 103–115. [Google Scholar] [CrossRef]
- Kumar, S.; Havey, T. Before and after disaster strikes: A relief supply chain decision support frame work. Int. J. Prod. Econ. 2013, 145, 613–629. [Google Scholar] [CrossRef]
- O’Leary, D. The use of social media in the supply chain: Survey and extensions. Intell. Syst. Account. Financ. Manag. 2011, 18, 121–144. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Wamba, S.F.; Papadopoulos, T. The impact of big data on world-class sustainable manufacturing. Int. J. Adv. Manuf. Technol. 2016, 84, 631–645. [Google Scholar] [CrossRef]
- Hazen, B.T.; Skipper, J.B.; Ezell, J.D.; Boone, C.A. Big Data and predictive analytics for supply chain sustainability: A theory-driven research agenda. Comput. Ind. Eng. 2016, 101, 592–598. [Google Scholar] [CrossRef]
- Hsu, J. Why Big Data Will Have an Impact on Sustainability. The Guardian. Available online: http://www.theguardian.com/sustainable-business/big-dataimpact-sustainable-business (accessed on 31 January 2014).
- Scholz, R.W. Sustainable Digital Environments: What Major Challenges Is Humankind Facing? Sustainability 2016, 8, 726. [Google Scholar] [CrossRef]
- Chen, H.; Chiang, R.H.; Storey, V.C. Business intelligence and analytics: From big data to big impact. MIS Q. 2012, 4, 1165–1188. [Google Scholar]
- Spotfire. Big Data in Manufacturing: Rise of the Machine: TIBCO Spotfire’s Trends and Outliers Blog. Available online: http://spotfire.tibco.com/blog/?p=20446>.2013 (accessed on 22 June 2016).
- Wamba, S.; Akter, S.; Edwards, A.; Chopin, G.; Gnanzou, D. How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study. Int. J. Prod. Econ. 2015. [Google Scholar] [CrossRef]
- Demirkan, H.; Delen, D. Leveraging the capabilities of service-oriented decision support systems: Putting analytics and big data in cloud. Decis. Support Syst. 2013, 55, 412–421. [Google Scholar] [CrossRef]
- Hazen, B.T.; Skipper, J.B.; Boone, C.A.; Hill, R.R. Back in business: Operations research in support of big data analytics for operations and supply chain management. Ann. Oper. Res. 2016. [Google Scholar] [CrossRef]
- Wang, G.; Gunasekaran, A.; Ngai, E.W.; Papadopoulos, T. Big data analytics in logistics and supply chain management: Certain investigations for research and applications. Int. J. Prod. Econ. 2016, 176, 98–110. [Google Scholar] [CrossRef]
- Mishra, D.; Gunasekaran, A.; Papadopoulos, T.; Childe, S.J. Big Data and supply chain management: A review and bibliometric analysis. Ann. Oper. Res. 2016. [Google Scholar] [CrossRef]
- Accenture Global Operations Mega Trends Study. Big Data Analytics in Supply Chain: Hype or Here to Stay? Available online: http://www.accenture.com/us-en/Pages/insight-global-operations-megatrends-big-data-analytics.aspx (accessed on 7 December 2014).
- Barnaghi, P.; Sheth, A.; Henson, C. From data to actionable knowledge: Big data challenges in the web of things. IEEE Intell. Syst. 2013, 28, 67–71. [Google Scholar] [CrossRef]
- Li, J.; Tao, F.; Cheng, Y.; Zhao, L. Big data in product lifecycle management. Int. J. Adv. Manuf. Technol. 2015, 81, 667–684. [Google Scholar] [CrossRef]
- Xia, M.; Zhang, Y.; Weng, L.; Ye, X. Fashion retailing forecasting based on extreme learning machine with adaptive metrics of inputs. Knowl. Based Syst. 2012, 36, 253–259. [Google Scholar] [CrossRef]
- Shen, B.; Chan, H.L. Forecast Information Sharing for Managing Supply Chains in the Big Data Era: Recent Development and Future Research. Asia Pac. J. Oper. Res. 2017, 34, 1740001. [Google Scholar] [CrossRef]
- Hofmann, E. Big data and supply chain decisions: The impact of volume, variety and velocity properties on the bullwhip effect. Int. J. Prod. Res. 2015. [Google Scholar] [CrossRef]
- Souza, G.C. Supply chain analytics. Bus. Horiz. 2014, 57, 595–605. [Google Scholar] [CrossRef]
- Brockhaus, S.; Kersten, W.; Knemeyer, A.M. Where do we go from here? Progressing sustainability implementation efforts across supply chains. J. Bus. Logist. 2013, 34, 167–182. [Google Scholar] [CrossRef]
- McWilliams, A.; Siegel, D.S. Creating and capturing value: Strategic corporate social responsibility, resource-based theory, and sustainable competitive advantage. J. Manag. 2011, 37, 1480–1495. [Google Scholar] [CrossRef]
- Hsu, J.M. Big Business + Big Data = Big Sustainability. 2013. Available online: http://www.sustainablebrands.com/news_and_views/info_tech/john-m-hsu/big business-Big-data-big-sustainability (accessed on 16 January 2016).
- Garetti, M.; Taisch, M. Sustainable manufacturing: Trends and research challenges. Prod. Plan. Control 2012, 23, 83–104. [Google Scholar] [CrossRef]
- Belaud, J.P.; Negny, S.; Dupros, F.; Michéa, D.; Vautrin, B. Collaborative simulation and scientific big data analysis: Illustration for sustainability in natural hazards management and chemical process engineering. Comput. Ind. 2014, 65, 521–535. [Google Scholar] [CrossRef]
- Kambatla, K.; Kollias, G.; Kumar, V.; Grama, A. Trends in big data analytics. J. Parallel Distrib. Comput. 2014, 74, 2561–2573. [Google Scholar] [CrossRef]
- Bettencourt-Silva, J.H.; Clark, J.; Cooper, C.S.; Mills, R.; Rayward-Smith, V.J.; De La Iglesia, B. Building data-driven pathways from routinely collected hospital data: A case study on prostate cancer. JMIR Med. Inf. 2015, 3, e26. [Google Scholar] [CrossRef] [PubMed]
- Halamka, J.D. Early experiences with big data at an academic medical center. Health Aff. 2014, 33, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Baek, H.; Park, S.K. Sustainable developments plan for Korea through expansion of green IT: Policy issues for the effective utilization of big data. Sustainability 2015, 7, 1308–1328. [Google Scholar] [CrossRef]
- Mason-Jones, R.; Towill, D.R. Shrinking the supply Chain Uncertainty Cycle, Control. Available online: http://www.enterrasolutions.com/media/docs/2011/02/19980901d.pdf (accessed on 10 July 2015).
- Berger, P.D.; Gerstenfeld, A.; Zeng, A.Z. How many suppliers are best? A decision-analysis approach. Omega 2004, 32, 9–15. [Google Scholar] [CrossRef]
- Christopher, M.; Lee, H. Mitigating supply chain risk through improved confidence. Int. J. Phys. Distrib. Logist. Manag. 2004, 34, 388–396. [Google Scholar] [CrossRef]
- LaLonde, B.J. A Crisis in Transportation. In Supply Chain Management Review; EH Publishing: Framingham, MA, USA, 2004; pp. 7–8. [Google Scholar]
- Norrman, A.; Jansson, U. Ericsson’s proactive supply chain risk management approach after a serious sub-supplier accident. Int. J. Phys. Distrib. Logist. Manag. 2004, 34, 434–456. [Google Scholar] [CrossRef]
- Quinn, F. Risky Business. In Supply Chain Management Review; EH Publishing: Framingham, MA, USA, 2006. [Google Scholar]
- Tang, C.S. Perspectives in supply chain risk management. Int. J. Prod. Econ. 2006, 103, 451–488. [Google Scholar] [CrossRef]
- Hendricks, K.B.; Singhal, V.R. An Empirical Analysis of the Effect of Supply Chain Disruptions on Long-Run Stock Price Performance and Equity Risk of the Firm. Prod. Oper. Manag. 2005, 14, 35–52. [Google Scholar] [CrossRef]
- Sheffi, Y.; Rice, J.B. A Supply Chain View of the Resilient Enterprise. MIT Sloan Manag. Rev. 2005, 47, 41–48. [Google Scholar]
- Jüttner, U. Supply chain risk management: Understanding the business requirements from a practitioner perspective. Int. J. Logist. Manag. 2005, 16, 120–141. [Google Scholar] [CrossRef]
- Choi, T.M.; Chan, H.K.; Yue, X. Recent development in big data analytics for business operations and risk management. IEEE Trans. Cybern. 2017, 47, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.K.; Choi, T.M.; Yue, X. Guest Editorial Big Data Analytics: Risk and Operations Management for Industrial Applications. IEEE Trans. Ind. Inf. 2016, 12, 1214–1218. [Google Scholar] [CrossRef]
- Lee, H.L. Aligning Supply Chain Strategies with Product Uncertainties. Calif. Manag. Rev. 2002, 44, 105–119. [Google Scholar] [CrossRef]
- Lee, H.L. The Triple-A Supply Chain. Harv. Bus. Rev. 2004, 82, 102–112. [Google Scholar] [PubMed]
- Narayanan, V.G.; Raman, A. Aligning Incentives in Supply Chains. Harv. Bus. Rev. 2004, 82, 94–102. [Google Scholar] [PubMed]
- Amit, R.; Schoemaker, P.J.H. Strategic assets and organizational rents. Strateg. Manag. J. 1993, 14, 33–46. [Google Scholar] [CrossRef]
- Cohen, W.; Levinthal, D. Absorptive capability: A new perspective on learning and innovation. Admin. Sci. Q. 1990, 35, 128–152. [Google Scholar] [CrossRef]
- Yin, R.K. Case Study Research: Design and Methods; Sage Publications: London, UK, 2013. [Google Scholar]
- Eisenhardt, K.M. Building theories from case study research. Acade. Manag. Rev. 1989, 14, 532–550. [Google Scholar]
- Markus, M.L. Power, politics, and MIS implementation. Commun. ACM 1983, 26, 430–444. [Google Scholar] [CrossRef]
- Bonoma, T.V. Case research in marketing: Opportunities, problems, and a process. J. Mark. Res. 1985, 22, 199–208. [Google Scholar] [CrossRef]
- Rowley, J. Using case studies in research. Manag. Res. News 2002, 25, 16–27. [Google Scholar]
- Feagin, J.R.; Orum, A.M.; Sjoberg, G. Conclusion: The present crisis in US sociology. In A Case for the Case Study; University of North Carolina Press: Chapel Hill, NC, USA, 1991; pp. 269–278. [Google Scholar]
- Drucker, P.F. The changed world economy. Foreign Aff. 1986, 64, 768–791. [Google Scholar] [CrossRef]
- Yin, R.K. Qualitative Research from Start to Finish; The Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Judd, C.M. Combining process and outcome evaluation. New Dir. Progr. Eval. 1987, 35, 23–41. [Google Scholar] [CrossRef]
- Kidder, L.H.; Fine, M. Qualitative and quantitative methods: When stories converge. New Dir. Eval. 1987, 35, 57–75. [Google Scholar] [CrossRef]
- Liebow, E. Tally’s Corner: A Study of Negro Street Corner Men; Rowman & Littlefield Publishers: New York, NY, USA, 2003. [Google Scholar]
- Naim, M.M.; Childerhouse, P.; Disney, S.M.; Towill, D.R. A supply chain diagnostic methodology: Determining the vector of change. Comput. Ind. Eng. 2002, 43, 135–157. [Google Scholar] [CrossRef]
- Wang, Y.; Lalwani, C.S. Using e-business to enable customized logistics sustainability. Int. J. Logist. Manag. 2007, 18, 402–419. [Google Scholar] [CrossRef]
- World Bank Report. International LPI Global Rankings. Available online: http://lpi.worldbank.org/international/global (accessed on 15 June 2016).
- Chandra, P.; Jain, N. The logistics sector in India: Overview and challenges. In World Scientific Series on 21st Century Business; Working Paper Series 2007; Indian Institute of Management: Ahmedabad, India, 2007; p. 105. Available online: http://iimahd.ernet.in/publications/data/2007-03-07Pankajchandra.pdf (accessed on 7 September 2016).
- Joshi, K.; Yesha, Y. Workshop on analytics for big data generated by healthcare and personalized medicine domain. In Proceedings of the 2012 Conference of the Center for Advanced Studies on Collaborative Research, Toronto, ON, Canada, 5–7 November 2012; pp. 267–269. [Google Scholar]
- Henschen, D. Merck Optimizes Manufacturing with Big Data Analytics: Information Week Connecting the Business Technology Community. Available online: http://www.informationweek.com/strategic-cio/executive-insights-and-innovation/merck-optimizes-manufacturing-with-big-data-analytics/d/d-id/1127901>.2014 (accessed on 22 July 2016).
- Peat, M. Big data in finance. In Finance: The Magazine for Finsia Members; Financial Services Institute of Australasia: Sydney, Australia, 2013; Volume 127, p. 34. [Google Scholar]
- Zhong, R.Y.; Xu, C.; Chen, C.; Huang, G.Q. Big data analytics for physical internet-based intelligent manufacturing shop floors. Int. J. Prod. Res. 2015. [Google Scholar] [CrossRef]
- Tan, K.H.; Zhan, Y.; Ji, G.; Ye, F.; Chang, C. Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph. Int. J. Prod. Econ. 2015, 165, 223–233. [Google Scholar] [CrossRef]
- Womack, J.P.; Jones, D.T.; Roos, D. The Machine that Changed the World; Rawson Associates: New York, NY, USA, 1990. [Google Scholar]
- Wheelwright, S.; Clark, K. Revolutionizing New Product Development; Free Press: New York, NY, USA, 1992. [Google Scholar]
- Chronopoulos, M.; De Reyck, B.; Siddiqui, A. The value of capacity sizing under risk aversion and operational flexibility. IEEE Trans. Eng. Manag. 2013, 60, 272–288. [Google Scholar] [CrossRef]
- Choi, J.; Jun, S.; Park, S. A Patent Analysis for Sustainable Technology Management. Sustainability 2016, 8, 688. [Google Scholar] [CrossRef]
- Choy, M.; Park, G. Sustaining Innovative Success: A Case Study on Consumer-Centric Innovation in the ICT Industry. Sustainability 2016, 8, 986. [Google Scholar] [CrossRef]
Serial. No. | Logistical Issues that Cause Disruptions | Mean | Ranking | Standard Deviation |
---|---|---|---|---|
1 | Workforce safety | 4.29 | 1 | 0.757 |
2 | Monitoring fuel-consumption (looking for excessive fuel consumption) | 3.98 | 2 | 1.033 |
3 | Theft of vehicles and goods | 3.96 | 3 | 1.167 |
4 | Tracking workforce health and drinking and driving | 3.89 | 4 | 1.112 |
5 | Controlling fuel cost (fuel economy) | 3.84 | 5 | 1.167 |
6 | Route optimization (time, route, energy, go green) | 3.73 | 6 | 1.321 |
7 | Proof of delivery | 3.64 | 7 | 1.228 |
8 | Unethical workforce activities (fuel adulteration, goods theft, information sharing) | 3.62 | 8 | 1.248 |
9 | Workforce security (robbery, communal clash) | 3.62 | 9 | 1.072 |
10 | Traffic violations (parking in no parking areas, signal jumping, abandoning vehicles) | 3.60 | 10 | 1.214 |
11 | Unscrupulous workforce behavior (loading unwanted and restricted material, vehicle movements in restricted areas, door open) | 3.60 | 11 | 1.268 |
12 | Natural calamities (floods, earthquakes, riots, agitations, fire) | 3.49 | 12 | 1.456 |
13 | Overspeeding | 3.29 | 13 | 1.359 |
Social issues | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Traffic violations (parking in no parking areas, signal jumping, abandoned vehicles) | −0.157 | 0.047 | −0.051 | −0.189 | −0.295 * | 0.244 | −0.189 | −0.267 | 0.003 | 0.189 | 0.209 | −0.237 | |
Unethical acts by workforce (fuel adulteration, goods theft, information sharing etc.) | 0.054 | −0.148 | −0.145 | 0.073 | 0.489 ** | −0.119 | 0.146 | 0.262 | −0.230 | −0.098 | −0.296 * | ||
Over-speeding thereby causing injury and accidents | −0.062 | −0.044 | 0.172 | 0.404 ** | −0.412 ** | 0.115 | 0.077 | −0.061 | 0.023 | 0.280 | |||
Unscrupulous workforce behavior (loading unwanted and restricted material, vehicle movements in restricted areas) | −0.002 | 0.028 | 0.274 | 0.009 | −0.011 | 0.049 | 0.053 | 0.005 | 0.018 | ||||
Theft of vehicle and goods | −0.054 | 0.244 | 0.346 * | 0.052 | 0.036 | 0.162 | −0.032 | 0.092 | |||||
Workforce safety | 0.384 ** | −0.050 | 0.309 * | 0.382 ** | 0.101 | 0.078 | −0.086 | ||||||
Workforce security (robbery, communal clash) | −0.141 | −0.151 | −0.036 | −0.035 | 0.264 | −0.302 * | |||||||
Controlling fuel cost (fuel economy) | 0.367 * | −0.229 | −0.066 | −0.151 | −0.160 | ||||||||
Route optimization | −0.025 | 0.029 | −0.113 | −0.256 | |||||||||
Proof of goods delivery | 0.188 | −0.042 | 0.370 * | ||||||||||
Workforce health and tracking (workforce health, drunk and driving) | 0.104 | 0.077 | |||||||||||
Fuel consumption monitoring (excessive fuel consumptions) | −0.098 | ||||||||||||
Natural calamities such as flood, earthquake, riots, agitations, fire etc. |
No. | Summary of Vehicle Activities | Daily Average Report/Vehicle | Tankers 79-In/97 Out | Block Chilling Units (Total No: 489) | Data Captured (Inbound, Outbound) | Total Volume of Data Captured (Daily) |
---|---|---|---|---|---|---|
1 | Distance report | 20 * | 20 × 79 | 20 × 79 × 489 | In | 7,72,620 data points |
2 | Engine run time report | 30 * | 30 × 79 | 30 × 79 × 489 | In | 1,158,930 data points |
3 | Fleet utilization report | 79 * | 79 | 79 × 489 | In | 38,631 data points |
4 | Round-trip report | 25 * (RT1) 35 * (RT2) | 79 × 25 79 × 35 | 1975 × 489 2765 × 489 | In | 965,775 data points 1,352,085 data points |
5 | Vehicle stoppage report | 95 * | 95 × 79 | 95 × 79 × 489 | In | 3,669,945 data points |
6 | Vehicle speed | 958 * | 958 × 79 | 958 × 79 × 489 | In | 37,008,498 data points |
7 | Vehicle in–out | 36 * | 36 × 79 | 36 × 79 × 489 | In | 1,390,716 data points |
8 | Geo-fencing report | 19 * | 19 × 79 | 19 × 79 × 489 | In | 733,989 data points |
10 | Playback tracing | 920 * | 920 × 79 | 920 × 79 × 489 | In | 35,540,520 data points |
SR No. | From Date | From Location | To Date | To Location | Duration |
---|---|---|---|---|---|
1 | 6 November 2016 00:20:06 | Mahuva-Anawal Rd., Tarkani, Gujarat 394248, India | 6 November 2016 00:42:50 | Mahuva-Anawal Rd., Bamaniya, Gujarat 394246, India | 22 min 44 s |
2 | 6 November 2016 00:58:10 | Mahuva-Anawal Rd., Bamaniya, Gujarat 394246, India | 6 November 2016 01:04:07 | SH 180, Vadi Faliya, Gujarat 394246, India | 5 min 57 s |
3 | 6 November 2016 02:12:18 | SH 180, Gunasvel, Gujarat 394246, India | 6 November 2016 02:20:09 | SH 180, Kumbhar Faliya, Gujarat 394245, India | 7 min 51 s |
4 | 6 November 2016 03:24:30 | SH 180, Kumbhar Faliya, Gujarat 394245, India | 6 November 2016 04:28:04 | Thakorji Complex, 121, Surat-Kadodara Rd., Kadodra, Kadodara, Gujarat 394325, India | 1 h 3 min 34 s |
5 | 6 November 2016 05:13:38 | 61, Surat-Kadodara Rd., Kadodara, Gujarat 394327, India | 6 November 2016 05:38:17 | JayPrakash Narayan Marg, Sahara Darwaja, Begampura, Surat, Gujarat 395003, India | 24 min 39 s |
6 | 6 November 2016 05:45:21 | Jay Prakash Narayan Marg, Sahara Darwaja, Begampura, Surat, Gujarat 395003, India | 6 November 2016 05:49:38 | 81, Sumul Dairy Rd., Sardar Nagar Society, Sardar Nagar, Patel Nagar, Surat, Gujarat 395008, India | 4 min 17 s |
7 | 6 November 2016 05:56:55 | 81, Sumul Dairy Rd., Sardar Nagar Society, Sardar Nagar, Patel Nagar, Surat, Gujarat 395008, India | 6 November 2016 05:59:10 | 3, Sumul Dairy Rd., Sahyog Society, Alkapuri Society, Patel Nagar, Surat, Gujarat 395008, India | 2 min 15 s |
8 | 6 November 2016 06:12:14 | 3, Sumul Dairy Rd., Sahyog Society, Alkapuri Society, Patel Nagar, Surat, Gujarat 395008, India | 6 November 2016 07:28:33 | 3, Sumul Dairy Rd., Sahyog Society, Alkapuri Society, Patel Nagar, Surat, Gujarat 395008, India | 1 h 16 min 19 s |
9 | 6 November 2016 07:47:48 | 3, Sumul Dairy Rd., Sahyog Society, Alkapuri Society, Patel Nagar, Surat, Gujarat 395008, India | 6 November 2016 08:20:00 | Surat-Bardoli Rd., Jolva, Gujarat 394310, India | 32 min 12 s |
10 | 6 November 2016 08:22:35 | Surat-Bardoli Rd., Jolva, Gujarat 394310, India | 6 November 2016 08:28:13 | Surat-Bardoli Rd., Dastan, Gujarat 394305, India | 5 min 38 s |
11 | 6 November 2016 08:30:36 | Surat-Bardoli Rd., Dastan, Gujarat 394305, India | 6 November 2016 08:57:02 | Kadodra-Antapur, Khali, Gujarat 394620, India | 26 min 26 s |
12 | 6 November 2016 09:21:37 | Kadodra-Antapur, Khali, Gujarat 394620, India | 6 November 2016 09:25:37 | Songada-Surat, Khali, Gujarat 394620, India | 4 min |
13 | 6 November 2016 09:25:57 | Songada-Surat, Khali, Gujarat 394620, India | 6 November 2016 09:27:26 | Songada-Surat, Tajpor Khurd, Gujarat 394620, India | 1 min 29 s |
14 | 6 November 2016 09:43:01 | Songada-Surat, Tajpor Khurd, Gujarat 394620, India | 6 November 2016 09:43:12 | Songada-Surat, Tajpor Khurd, Gujarat 394620, India | 11 s |
15 | 6 November 2016 09:43:38 | Songada-Surat, Tajpor Khurd, Gujarat 394620, India | 6 November 2016 10:01:01 | Bajipura Bypass Rd., Bajipura, Gujarat 394690, India | 17 min 23 s |
16 | 6 November 2016 10:51:19 | Bajipura Bypass Rd., Bajipura, Gujarat 394690, India | 6 November 2016 11:21:11 | Unnamed Road, Chakalia, Gujarat 394650, India | 29 min 52 s |
17 | 6 November 2016 11:54:12 | Unnamed Road, Chakalia, Gujarat 394650, India | 6 November 2016 12:23:06 | Unnamed Road, Nishana, Gujarat 394651, India | 28 min 54 s |
18 | 6 November 2016 13:22:19 | Unnamed Road, Nishana, Gujarat 394651, India | 6 November 2016 13:43:33 | 21 min 14 s | |
19 | 6 November 2016 14:16:15 | Unnamed Road, Chorvad, Gujarat 394650, India | 6 November 2016 14:24:22 | Unnamed Road, Khambhala, Gujarat 394650, India | 8 min 7 s |
20 | 6 November 2016 14:42:20 | Unnamed Road, Khambhala, Gujarat 394650, India | 6 November 2016 14:44:33 | Songada-Surat, Khambhala, Gujarat 394650, India | 2 min 13 s |
21 | 6 November 2016 14:53:36 | Songada-Surat, Khambhala, Gujarat 394650, India | 6 November 2016 15:01:54 | Unnamed Road, Kanala, Gujarat 394365, India | 8 min 18 s |
22 | 6 November 2016 15:32:36 | Unnamed Road, Kanala, Gujarat 394365, India | 6 November 2016 15:59:41 | Unnamed Road, Chapaldhara, Gujarat 394365, India | 27 min 5 s |
23 | 6 November 2016 16:04:05 | Unnamed Road, Chapaldhara, Gujarat 394365, India | 6 November 2016 16:10:00 | Unnamed Road, Songadh, Gujarat 394365, India | 5 min 55 s |
24 | 6 November 2016 16:54:37 | Unnamed Road, Songadh, Gujarat 394365, India | 6 November 2016 17:14:53 | Unnamed Road, Jharali, Gujarat 394365, India | 20 min 16 s |
25 | 6 November 2016 17:15:36 | Unnamed Road, Jharali, Gujarat 394365, India | 6 November 2016 17:20:52 | Unnamed Road, Bedvan P Umarda, Gujarat 394365, India | 5 min 16 s |
26 | 6 November 2016 17:45:40 | Unnamed Road, Bedvan P Umarda, Gujarat 394365, India | 6 November 2016 18:03:51 | Unnamed Road, Vadpada P Tokarva, Gujarat 394365, India | 18 min 11 s |
27 | 6 November 2016 18:19:18 | Unnamed Road, Vadpada P Tokarva, Gujarat 394365, India | 6 November 2016 18:56:39 | GJ SH 172, Vyara, Gujarat 394650, India | 37 min 21 s |
28 | 6 November 2016 19:37:26 | GJ SH 176, Vyara, Gujarat 394650, India | 6 November 2016 20:57:45 | Chhatrala Complex, 111-112, Surat-Kadodara Rd., Tal. Palsana, Vareli, Gujarat 394327, India | 1 h 20 min 19 s |
SR# | Vehicle | Utilized (%) | Unutilized (%) |
---|---|---|---|
1 | GJ-19-U-2809 (Milk Tanker 2809) | 31.74 | 68.26 |
2 | GJ-05-AV-3499 (Milk Tanker 3499) | 21.48 | 78.52 |
3 | GJ-19-X-2709 (Milk Tanker 2709) | 39.67 | 60.33 |
4 | GJ-19-U-3809 (Milk Tanker 3809) | 33.45 | 66.55 |
5 | GJ-19-U-4909 (Milk Tanker 4909) | 35.61 | 64.39 |
6 | GJ-19-V-0999 (Milk Tanker 0999) | 52.57 | 47.43 |
7 | GJ-05-BT-8008 (Milk Tanker 8008) | 29.18 | 70.82 |
8 | GJ-05-AU-5897 (Milk Tanker 5897) | 40.47 | 59.53 |
9 | GJ-19-V-4709 (Milk Tanker 4709) | 39.35 | 60.65 |
10 | GJ-19-T-3409 (Milk Tanker 3409) | 33.02 | 66.98 |
11 | GJ-21-T-7737 (Milk Tanker 7737) | 40.97 | 59.03 |
12 | GJ-19-V-3909 (Milk Tanker 3909) | 35.49 | 64.51 |
13 | GJ-05-AT-2278 (Milk Tanker 2278) | 32.37 | 67.63 |
14 | GJ-19-U-3609 (Milk Tanker 3609) | 32.4 | 67.6 |
15 | GJ-19-U-7609 (Milk Tanker 7609) | 35.36 | 64.64 |
16 | GJ-21-V-9060 (Milk Tanker 9060) | 41.31 | 58.69 |
17 | GJ-19-V-8181 (Milk Tanker 8181) | 19.53 | 80.47 |
18 | GJ-05-AT-1098 (Milk Tanker 1098) | 28.79 | 71.21 |
19 | GJ-19-T-3709 (Milk Tanker 3709) | 36.45 | 63.55 |
20 | GJ-19-V-4809 (Milk Tanker 4809) | 31.29 | 68.71 |
21 | GJ-19-V-4509 (Milk Tanker 4509) | 35.89 | 64.11 |
22 | GJ-05-AZ-4201 (Milk Tanker 4201) | 34.66 | 65.34 |
23 | GJ-19-V-4209 (Milk Tanker 4209) | 40.2 | 59.8 |
24 | GJ-19-X-2636 (Milk Tanker 2636) | 22.29 | 77.71 |
25 | GJ-19-U-2909 (Milk Tanker 2909) | 45.06 | 54.94 |
26 | GJ-19-U-7709 (Milk Tanker 7709) | 36.64 | 63.36 |
27 | GJ-05-YY-7236 (Milk Tanker 7236) | - | - |
28 | GJ-05-AT-1476 (Milk Tanker 1476) | 34.38 | 65.62 |
29 | GJ-05-AT-4599 (Milk Tanker 4599) | 38.18 | 61.82 |
30 | GJ-05-AZ-1818 (Milk Tanker 1818) | 32.08 | 67.92 |
31 | GJ-05-AU-8868 (Milk Tanker 8868) | 34.04 | 65.96 |
32 | GJ-19-T-9099 (Milk Tanker 9099) | 39.61 | 60.39 |
33 | GJ-21-V-8970 (Milk Tanker 8970) | 44.17 | 55.83 |
34 | GJ-19-T-3445 (Milk Tanker 3445) | 32.89 | 67.11 |
35 | GJ-21-T-7980 (Milk Tanker 7980) | 40.89 | 59.11 |
36 | GJ-21-V-5640 (Milk Tanker 5640) | 38.75 | 61.25 |
37 | GJ-21-T-7773 (Milk Tanker 7773) | 44.62 | 55.38 |
38 | GJ-19-T-3598 (Milk Tanker 3598) | 83.47 | 16.53 |
39 | GJ-02-Z-9696 (Milk Tanker 9696) | 39.77 | 60.23 |
40 | GJ-02-Z-881 (Milk Tanker 881) | 30.23 | 69.77 |
41 | GJ-02-Z-1157 (Milk Tanker 1157) | 39.41 | 60.59 |
42 | GJ-02-Z-8319 (Milk Tanker 8319) | 44.68 | 55.32 |
43 | GJ-21-Z-9600 (Milk Tanker 9600) | 31.36 | 68.64 |
44 | GJ-21-V-4560 (Milk Tanker 4560) | 36.55 | 63.45 |
45 | GJ-21-V-9330 (Milk Tanker 9330) | 41.07 | 58.93 |
46 | GJ-02-Z-9496 (Milk Tanker 9496) | 20.23 | 79.77 |
47 | GJ-02-Z-4501 (Millk Tanker 4501) | 24.98 | 75.02 |
48 | GJ-02-Z-851 (Milk Tanker 851) | 26.33 | 73.67 |
49 | GJ-19-U-4109 (Milk Tanker 4109) | 42.14 | 57.86 |
50 | GJ-05-BT-4509 (Milk Tanker 4509) | 56.58 | 43.42 |
SR# | Date/Time | Speed | Driver Name |
---|---|---|---|
1 | 5 November 2016 07:09:12 am | 0 KMPH | |
2 | 5 November 2016 07:13:31 am | 0 KMPH | |
3 | 5 November 2016 07:13:42 am | 0 KMPH | |
4 | 5 November 2016 07:30:38 am | 16 KMPH | |
5 | 5 November 2016 07:30:58 am | 32 KMPH | |
6 | 5 November 2016 07:31:18 am | 16 KMPH | |
7 | 5 November 2016 07:31:38 am | 33 KMPH | |
8 | 5 November 2016 07:33:58 am | 15 KMPH | |
9 | 5 November 2016 07:34:18 am | 35 KMPH | |
10 | 5 November 2016 07:34:38 am | 7 KMPH | |
11 | 5 November 2016 07:35:39 am | 23 KMPH | |
12 | 5 November 2016 07:35:59 am | 41 KMPH | |
13 | 5 November 2016 07:36:19 am | 43 KMPH | |
14 | 5 November 2016 07:36:39 am | 44 KMPH | |
15 | 5 November 2016 07:36:59 am | 45 KMPH | |
16 | 5 November 2016 07:37:19 am | 45 KMPH | |
17 | 5 November 2016 07:37:39 am | 46 KMPH | |
18 | 5 November 2016 07:38:19 am | 44 KMPH | |
19 | 5 November 2016 07:38:39 am | 45 KMPH | |
20 | 5 November 2016 07:39:19 am | 49 KMPH | |
21 | 5 November 2016 07:39:39 am | 37 KMPH | |
22 | 5 November 2016 07:39:59 am | 37 KMPH | |
23 | 5 November 2016 07:40:19 am | 40 KMPH | |
24 | 5 November 2016 07:40:39 am | 44 KMPH | |
25 | 5 November 2016 07:40:59 am | 43 KMPH | |
26 | 5 November 2016 07:41:19 am | 42 KMPH | |
27 | 5 November 2016 07:41:39 am | 45 KMPH | |
28 | 5 November 2016 07:41:59 am | 44 KMPH | |
29 | 5 November 2016 07:42:19 am | 45 KMPH | |
30 | 5 November 2016 07:42:39 am | 44 KMPH |
SR# | Stoppage Time | Stoppage Duration | Stoppage Location |
---|---|---|---|
1 | From 31 October 2016, 09:33:26 to 31 October 2016, 09:34:31 | 1 min 5 s | Vyara Bypass Rd., Virpur, Gujarat 394650, India |
2 | From 31 October 2016, 20:48:42 to 31 October 2016, 20:50:45 | 2 min 3 s | Songada-Surat, Hindolia, Gujarat 394620, India |
3 | From 1 November 2016, 07:32:37 to 1 November 2016, 07:46:46 | 14 min 9 s | Gujarat State Highway 167, Kamrej, Gujarat 394185, India |
4 | From 1 November 2016, 08:21:29 to 1 November 2016, 08:57:20 | 35 min 51 s | Gujarat State Highway 167, Vihan, Gujarat 394140, India |
5 | From 1 November 2016, 14:48:46 to 1 November 2016, 14:53:54 | 5 min 8 s | Gujarat State Highway 167, Netrang, Gujarat 394180, India |
6 | From 1 November 2016, 22:12:04 to 1 November 2016, 22:13:10 | 1 min 6 s | Unnamed Road, Panchol, Gujarat 394635, India |
7 | From 3 November 2016, 07:50:07 to 3 November 2016, 08:00:35 | 10 min 28 s | Gujarat State Highway 167, Kamrej, Gujarat 394185, India |
8 | From 4 November 2016, 09:48:44 to 4 November 2016, 09:55:24 | 6 min 40 s | Vyara Bypass Rd., Katgadh, Gujarat 394650, India |
9 | From 4 November 2016, 18:47:25 to 4 November 2016, 18:53:47 | 6 min 22 s | Surat-Kadodara Rd., Bareli, Tal. Palsana, Naya Bazar, Kadodra, Vareli, Gujarat 394327, India. |
10 | From 5 November 2016, 08:29:59 to 5 November 2016, 08:39:29 | 9 min 30 s | Mahuva-Bardoli Rd., Isroli, Gujarat 394620, India |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mani, V.; Delgado, C.; Hazen, B.T.; Patel, P. Mitigating Supply Chain Risk via Sustainability Using Big Data Analytics: Evidence from the Manufacturing Supply Chain. Sustainability 2017, 9, 608. https://doi.org/10.3390/su9040608
Mani V, Delgado C, Hazen BT, Patel P. Mitigating Supply Chain Risk via Sustainability Using Big Data Analytics: Evidence from the Manufacturing Supply Chain. Sustainability. 2017; 9(4):608. https://doi.org/10.3390/su9040608
Chicago/Turabian StyleMani, Venkatesh, Catarina Delgado, Benjamin T. Hazen, and Purvishkumar Patel. 2017. "Mitigating Supply Chain Risk via Sustainability Using Big Data Analytics: Evidence from the Manufacturing Supply Chain" Sustainability 9, no. 4: 608. https://doi.org/10.3390/su9040608
APA StyleMani, V., Delgado, C., Hazen, B. T., & Patel, P. (2017). Mitigating Supply Chain Risk via Sustainability Using Big Data Analytics: Evidence from the Manufacturing Supply Chain. Sustainability, 9(4), 608. https://doi.org/10.3390/su9040608