Introducing Sustainability in Value Models to Support Design Decision Making: A Systematic Review
Abstract
:1. Introduction and Objectives
“How can value-driven methodologies be successfully integrated in the innovation process work to deliver product/service solutions with true sustainability built in?”
2. Systematic Literature Review Approach
2.1. Stage 1: Developing an Initial Architecture
2.2. Stage 2: Systematic Review
TITLE-ABS-KEY (Value* AND Sustainab* AND (engineer* OR innovat* OR design* OR develop*) AND (system* OR technolog* OR offer* OR product* OR service*)) AND PUBYEAR > 2006 AND (LIMIT-TO(DOCTYPE,"ar") OR LIMIT-TO(DOCTYPE,"re") OR LIMIT-TO(DOCTYPE,"ch")).
2.3. Stage 3: Framework Synthesis
3. Bibliometric
3.1. Source Analysis
3.2. Levels, Industrial Sector and Type of Entity Studied
4. Metalevel Contributions and Challenges
5. Strategic Level Contributions and Challenges
5.1. Areas of Interventions
5.2. Business Model Transformation
5.3. Business Model Selection
5.4. Enterprise-Level Sustainability Scores
5.5. Enterprise-Level Sustainability KPI
6. Tactical Level Contributions and Challenges
6.1. KPI for Sustainable Supply Chain Management
6.2. KPI for Sustainable Manufacturing
6.3. KPI for Sustainable Project Management
7. Operational Level Contributions and Challenges
8. Discussion
9. Conclusions
Acknowledgments
Conflicts of Interest
References
- Nidumolu, R.; Prahalad, C.K.; Rangaswami, M.R. Why sustainability is now the key driver of innovation. Harv. Bus. Rev. 2009, 87, 56–64. [Google Scholar]
- Lubin, D.A.; Esty, D.C. The sustainability imperative. Harv. Bus. Rev. 2010, 88, 42–50. [Google Scholar]
- Heikkurinen, P.; Bonnedahl, K.J. Corporate responsibility for sustainable development: A review and conceptual comparison of market-and stakeholder-oriented strategies. J. Clean. Prod. 2013, 43, 191–198. [Google Scholar] [CrossRef]
- Willard, B. The New Sustainability Advantage: Seven Business Case Benefits of a Triple Bottom Line; New Society Publishers: Gabriola Island, BC, Canada, 2012. [Google Scholar]
- Eccles, R.G.; Ioannou, I.; Serafeim, G. The impact of corporate sustainability on organizational processes and performance. Manag. Sci. 2014, 60, 2835–2857. [Google Scholar] [CrossRef]
- Kaebernick, H.; Kara, S.; Sun, M. Sustainable product development and manufacturing by considering environmental requirements. Robot. Comput.-Integr. Manuf. 2003, 19, 461–468. [Google Scholar] [CrossRef]
- Pujari, D.; Peattie, K.; Wright, G. Organizational antecedents of environmental responsiveness in industrial new product development. Ind. Market. Manag. 2004, 33, 381–391. [Google Scholar] [CrossRef]
- Waage, S.A. Re-considering product design: A practical “road-map” for integration of sustainability issues. J. Clean. Prod. 2007, 15, 638–649. [Google Scholar] [CrossRef]
- Bertoni, M.; Hallstedt, S.; Isaksson, O. A model-based approach for sustainability and value assessment in the aerospace value chain. Adv. Mech. Eng. 2015, 7, 1–19. [Google Scholar] [CrossRef]
- Hallstedt, S.; Bertoni, M.; Isaksson, O. Assessing sustainability and value of manufacturing processes: A case in the aerospace industry. J. Clean. Prod. 2015, 108, 169–182. [Google Scholar] [CrossRef]
- Gmelin, H.; Seuring, S. Determinants of a sustainable new product development. J. Clean. Prod. 2014, 69, 1–9. [Google Scholar] [CrossRef]
- Petala, E.; Wever, R.; Dutilh, C.; Brezet, H. The role of new product development briefs in implementing sustainability: A case study. J. Eng. Technol. Manag. 2010, 27, 172–182. [Google Scholar] [CrossRef]
- Isaksson, O.; Bertoni, M.; Hallstedt, S.; Lavesson, N. Model Based Decision Support for Value and Sustainability in Product Development. In Proceedings of the 20th International Conference on Engineering Design (ICED 15), Milan, Italy, 27–30 July 2015; Volume 1. [Google Scholar]
- Tranfield, D.R.; Denyer, D.; Smart, P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Adams, R.; Jeanrenaud, S.; Bessant, J.; Denyer, D.; Overy, P. Sustainability-oriented Innovation: A Systematic Review. Int. J. Manag. Rev. 2015, 18, 180–205. [Google Scholar] [CrossRef]
- Ardito, L.; Messeni Petruzzelli, A.; Albino, V. From technological inventions to new products: A systematic review and research agenda of the main enabling factors. Eur. Manag. Rev. 2015, 12, 113–147. [Google Scholar] [CrossRef]
- Zhang, F.; Rio, M.; Allais, R.; Zwolinski, P.; Carrillo, T.R.; Roucoules, L.; Mercier-Laurent, E.; Buclet, N. Toward an systemic navigation framework to integrate sustainable development into the company. J. Clean. Prod. 2013, 54, 199–214. [Google Scholar] [CrossRef]
- Hallstedt, S.; Ny, H.; Robèrt, K.H.; Broman, G. An approach to assessing sustainability integration in strategic decision systems for product development. J. Clean. Prod. 2010, 18, 703–712. [Google Scholar] [CrossRef]
- Green, K.W., Jr.; Zelbst, P.J.; Bhadauria, V.S.; Meacham, J. Do environmental collaboration and monitoring enhance organizational performance? Ind. Manag. Data Syst. 2012, 112, 186–205. [Google Scholar] [CrossRef]
- Geraldi, J.; Maylor, H.; Williams, T. Now, let’s make it really complex (complicated) A systematic review of the complexities of projects. Int. J. Oper. Prod. Manag. 2011, 31, 966–990. [Google Scholar] [CrossRef]
- Popay, J.; Roberts, H.; Sowden, A.; Petticrew, M.; Arai, L.; Rodgers, M.; Britten, N.; Roen, K.; Duffy, S. Guidance on the Conduct of Narrative Synthesis in Systematic Reviews: A Product from the ESRC Methods Programme, version 1; Lancaster University: Lancaster, UK, 2006; p. 92. [Google Scholar]
- Webster, J.; Watson, R.T. Analyzing the past to prepare for the future: Writing a literature review. MIS Q. 2002, 26, 13–23. [Google Scholar]
- Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. Systematic Mapping Studies in Software Engineering. In Proceedings of the 12th international conference on Evaluation and Assessment in Software Engineer (EASE), Bari, Italy, 26–27 June 2008; Volume 8, pp. 68–77. [Google Scholar]
- Mukherjee, A.; Kamarulzaman, N.H.; Vijayan, G.; Vaiappuri, S.K. Sustainability: A Comprehensive Literature. In Handbook of Research on Global Supply Chain Management; IGI Global Publishers: Hershey, PA, USA, 2015; p. 248. [Google Scholar]
- Broman, G.I.; Robèrt, K.H. A framework for strategic sustainable development. J. Clean. Prod. 2017, 140, 17–31. [Google Scholar] [CrossRef]
- Lindsey, T.C. Sustainable principles: Common values for achieving sustainability. J. Clean. Prod. 2011, 19, 561–565. [Google Scholar] [CrossRef]
- De Vries, B.J.; Petersen, A.C. Conceptualizing sustainable development: An assessment methodology connecting values, knowledge, worldviews and scenarios. Ecol. Econ. 2009, 68, 1006–1019. [Google Scholar] [CrossRef]
- Bolis, I.; Morioka, S.N.; Sznelwar, L.I. When sustainable development risks losing its meaning. Delimiting the concept with a comprehensive literature review and a conceptual model. J. Clean. Prod. 2014, 83, 7–20. [Google Scholar] [CrossRef]
- Pearce, O.J.; Murray, N.J.; Boyd, T.W. Halstar: Systems engineering for sustainable development. Proc. Inst. Civil Eng. Eng. Sustain. 2012, 165, 129–140. [Google Scholar] [CrossRef]
- Aschehoug, S.H.; Boks, C. Towards a framework for sustainability information in product development. Int. J. Sustain. Eng. 2013, 6, 94–108. [Google Scholar] [CrossRef]
- Gotzsch, J. Key aspects of product attraction: A focus on eco-friendliness. Int. J. Environ. Technol. Manag. 2008, 8, 37–52. [Google Scholar] [CrossRef]
- De Medeiros, J.F.; Ribeiro, J.L.D. Environmentally sustainable innovation: Expected attributes in the purchase of green products. J. Clean. Prod. 2017, 142, 240–248. [Google Scholar] [CrossRef]
- Michaud, C.; Llerena, D. Green consumer behaviour: An experimental analysis of willingness to pay for remanufactured products. Bus. Strateg. Environ. 2011, 20, 408–420. [Google Scholar] [CrossRef]
- Tsai, M.T.; Chuang, L.M.; Chao, S.T.; Chang, H.P. The effects assessment of firm environmental strategy and customer environmental conscious on green product development. Environ. Monit. Access. 2012, 184, 4435–4447. [Google Scholar] [CrossRef] [PubMed]
- Goucher-Lambert, K.; Cagan, J. The Impact of Sustainability on Consumer Preference Judgments of Product Attributes. J. Mech. Des. 2015, 137, 081401. [Google Scholar] [CrossRef]
- Biswas, A.; Roy, M. Leveraging factors for sustained green consumption behavior based on consumption value perceptions: Testing the structural model. J. Clean. Prod. 2015, 95, 332–340. [Google Scholar] [CrossRef]
- Hamzaoui Essoussi, L.; Linton, J.D. New or recycled products: How much are consumers willing to pay? J. Consum. Market. 2010, 27, 458–468. [Google Scholar] [CrossRef]
- Soltmann, C.; Stucki, T.; Woerter, M. The Impact of Environmentally Friendly Innovations on Value Added. Environ. Resour. Econ. 2015, 62, 457–479. [Google Scholar] [CrossRef]
- Ozaki, R.; Sevastyanova, K. Going hybrid: An analysis of consumer purchase motivations. Energy Policy 2011, 39, 2217–2227. [Google Scholar] [CrossRef]
- Kim, S.; Cho, Y.; Niki, K.; Yamanaka, T. Integrating affective values to sustainable behaviour focused on Kansei engineering. Int. J. Sustain. Eng. 2016, 9, 378–389. [Google Scholar] [CrossRef]
- Ha-Brookshire, J.E.; Norum, P.S. Willingness to pay for socially responsible products: Case of cotton apparel. J. Consum. Market. 2011, 28, 344–353. [Google Scholar] [CrossRef]
- Raska, D.; Shaw, D. When is going green good for company image? Manag. Res. Rev. 2012, 35, 326–347. [Google Scholar] [CrossRef]
- Martin, D.M.; Väistö, T. Reducing the Attitude-Behavior Gap in Sustainable Consumption: A Theoretical Proposition and the American Electric Vehicle Market. In Marketing in and for a Sustainable Society; Emerald Group Publishing Limited: Chicago, IL, USA, 2016; pp. 193–213. [Google Scholar]
- Beloff, B.; Chevallier, A. The Case and Practice for Sustainability in Business. In Sustainability: Multi-Disciplinary Perspectives; Cabezas, H., Diwekar, U., Eds.; Bentham Books: Danvers, MA, USA, 2012; pp. 310–339. [Google Scholar]
- Laszlo, C.; Cooperrider, D.L. Design for sustainable value: A whole system approach. Adv. Apprec. Inq. 2008, 2, 15–29. [Google Scholar]
- Laszlo, C. Sustainable Value: How the World’s Leading Companies Are Doing Well by Doing Good; Stanford University Press: Stanford, CA, USA, 2008. [Google Scholar]
- Moore, S.B.; Manring, S.L. Strategy development in small and medium sized enterprises for sustainability and increased value creation. J. Clean. Prod. 2009, 17, 276–282. [Google Scholar] [CrossRef]
- Jensen, J.K.; Munksgaard, K.B.; Arlbjørn, J.S. Chasing value offerings through green supply chain innovation. Eur. Bus. Rev. 2013, 25, 124–146. [Google Scholar] [CrossRef]
- Kurapatskie, B.; Darnall, N. Which corporate sustainability activities are associated with greater financial payoffs? Bus. Strateg. Environ. 2013, 22, 49–61. [Google Scholar] [CrossRef]
- Papadopoulos, I.; Karagouni, G.; Trigkas, M.; Beltsiou, Z. Mainstreaming green product strategies: Why and how furniture companies integrate environmental sustainability? EuroMed J. Bus. 2014, 9, 293–317. [Google Scholar] [CrossRef]
- Chou, C.J.; Chen, C.W.; Conley, C. Creating Sustainable Value through Service Offerings. Res.-Technol. Manag. 2015, 58, 48–55. [Google Scholar]
- Hang, S.; Chunguang, Z. Does environmental management improve enterprise’s value?—An empirical research based on Chinese listed companies. Ecol. Indic. 2015, 51, 191–196. [Google Scholar] [CrossRef]
- Tollin, K.; Christensen, L.B.; Wilke, R. Sustainability in business from a marketing perspective. J. Strateg. Market. 2015, 23, 471–496. [Google Scholar] [CrossRef]
- Ford, S.; Despeisse, M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. J. Clean. Prod. 2016, 137, 1573–1587. [Google Scholar] [CrossRef]
- Hsu, C.C.; Tan, K.C.; Mohamad Zailani, S.H. Strategic orientations, sustainable supply chain initiatives, and reverse logistics: Empirical evidence from an emerging market. Int. J. Oper. Prod. Manag. 2016, 36, 86–110. [Google Scholar] [CrossRef]
- Roome, N.; Louche, C. Journeying Toward Business Models for Sustainability A Conceptual Model Found Inside the Black Box of Organisational Transformation. Organ. Environ. 2015, 29. [Google Scholar] [CrossRef]
- Kumar, D.; Rahman, Z. Buyer supplier relationship and supply chain sustainability: Empirical study of Indian automobile industry. J. Clean. Prod. 2016, 131, 836–848. [Google Scholar] [CrossRef]
- Gómez-Bezares, F.; Przychodzen, W.; Przychodzen, J. Bridging the gap: How sustainable development can help companies create shareholder value and improve financial performance. Bus. Ethics Eur. Rev. 2017, 26, 1–17. [Google Scholar] [CrossRef]
- Li, D.; Zheng, M.; Cao, C.; Chen, X.; Ren, S.; Huang, M. The impact of legitimacy pressure and corporate profitability on green innovation: Evidence from China top 100. J. Clean. Prod. 2017, 141, 41–49. [Google Scholar] [CrossRef]
- Severo, E.A.; de Guimarães, J.C.F.; Dorion, E.C.H. Cleaner production and environmental management as sustainable product innovation antecedents: A survey in Brazilian industries. J. Clean. Prod. 2017, 142, 87–97. [Google Scholar] [CrossRef]
- Yang, M.; Evans, S.; Vladimirova, D.; Rana, P. Value uncaptured perspective for sustainable business model innovation. J. Clean. Prod. 2017, 140, 1794–1804. [Google Scholar] [CrossRef]
- Beckmann, M.; Hielscher, S.; Pies, I. Commitment Strategies for Sustainability: How Business Firms Can Transform Trade-Offs Into Win–Win Outcomes. Bus. Strateg. Environ. 2014, 23, 18–37. [Google Scholar] [CrossRef]
- Fearne, A.; Garcia Martinez, M.; Dent, B. Dimensions of sustainable value chains: Implications for value chain analysis. Supply Chain Manag. Int. J. 2012, 17, 575–581. [Google Scholar] [CrossRef]
- Gimenez, C.; Tachizawa, E.M. Extending sustainability to suppliers: A systematic literature review. Supply Chain Manag. Int. J. 2012, 17, 531–543. [Google Scholar] [CrossRef]
- Ding, H.; Zhao, Q.; An, Z.; Xu, J.; Liu, Q. Pricing strategy of environmental sustainable supply chain with internalizing externalities. Int. J. Prod. Econ. 2015, 170, 563–575. [Google Scholar] [CrossRef]
- Wong, L.; Avery, G.C. Creating sustainability in organisations: Beyond being green. Int. J. Interdiscip. Soc. Sci. 2008, 3, 68–74. [Google Scholar] [CrossRef]
- Sekerka, L.E.; Stimel, D. How durable is sustainable enterprise? Ecological sustainability meets the reality of tough economic times. Bus. Horiz. 2011, 54, 115–124. [Google Scholar] [CrossRef]
- Biggemann, S.; Williams, M.; Kro, G. Building in sustainability, social responsibility and value co-creation. J. Bus. Ind. Market. 2014, 29, 304–312. [Google Scholar] [CrossRef]
- Ciasullo, V.M.; Troisi, O. Sustainable value creation in SMEs: A case study. TQM J. 2013, 25, 44–61. [Google Scholar] [CrossRef]
- Martínez-Ferrero, J.; Frías-Aceituno, J.V. Relationship between sustainable development and financial performance: International empirical research. Bus. Strateg. Environ. 2015, 24, 20–39. [Google Scholar] [CrossRef]
- Keskin, D.; Diehl, J.C.; Molenaar, N. Innovation process of new ventures driven by sustainability. J. Clean. Prod. 2013, 45, 50–60. [Google Scholar] [CrossRef]
- Alblas, A.A.; Peters, K.; Wortmann, J.C. Fuzzy sustainability incentives in new product development: An empirical exploration of sustainability challenges in manufacturing companies. Int. J. Oper. Prod. Manag. 2014, 34, 513–545. [Google Scholar] [CrossRef]
- Osch, W.; Avital, M. The road to Sustainable Value: The path-dependent construction of sustainable innovation as sociomaterial practices in the car industry. In Positive Design and Appreciative Construction: From Sustainable Development to Sustainable Value; Emerald Group Publishing Limited: Bingley, UK, 2010. [Google Scholar]
- Tollin, K.; Vej, J. Sustainability in business: Understanding meanings, triggers and enablers. J. Strateg. Market. 2012, 20, 625–641. [Google Scholar] [CrossRef]
- Halila, F.; Rundquist, J. The development and market success of eco-innovations: A comparative study of eco-innovations and “other” innovations in Sweden. Eur. J. Innovat. Manag. 2011, 14, 278–302. [Google Scholar] [CrossRef]
- Schaltegger, S.; Lüdeke-Freund, F.; Hansen, E.G. Business cases for sustainability: The role of business model innovation for corporate sustainability. Int. J. Innov. Sustain. Dev. 2012, 6, 95–119. [Google Scholar] [CrossRef]
- Rainey, D.L. A Model for Improving the Adoption of Sustainability in the Context of Globalization and Innovation. In Technological, Managerial and Organizational Core Competencies: Dynamic Innovation and Sustainable Development; Business Science Reference: Hershey, PA, USA, 2011; pp. 500–521. [Google Scholar]
- Rainey, D.L. A Holistic Model for Linking Sustainability, Sustainable Development, and Strategic Innovation in the Context of Globalization. In Handbook of Research on Sustainable Development and Economics; IGI Global: Hershey, PA, USA, 2015; p. 222. [Google Scholar]
- Boons, F.; Lüdeke-Freund, F. Business models for sustainable innovation: State-of-the-art and steps towards a research agenda. J. Clean. Prod. 2013, 45, 9–19. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; Short, S.W.; Rana, P.; Evans, S. A literature and practice review to develop sustainable business model archetypes. J. Clean. Prod. 2014, 65, 42–56. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; Rana, P.; Short, S.W. Value mapping for sustainable business thinking. J. Ind. Prod. Eng. 2015, 32, 67–81. [Google Scholar] [CrossRef]
- Girotra, K.; Netessine, S. OM Forum-Business Model Innovation for Sustainability. Manuf. Serv. Oper. Manag. 2013, 15, 537–544. [Google Scholar] [CrossRef]
- Ceschin, F. Product-service system innovation: A promising approach to sustainability. In Sustainable Product-Service Systems; Springer: Berlin, Germany, 2014; pp. 17–40. [Google Scholar]
- Antonova, A. Service Science, Value Creation, and Sustainable Development: Understanding Service-Based Business. In Regional Development: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2012; p. 108. [Google Scholar]
- Bryson, J.R.; Lombardi, R. Balancing product and process sustainability against business profitability: Sustainability as a competitive strategy in the property development process. Bus. Strateg. Environ. 2009, 18, 97–107. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Bocken, N.M.; Hultink, E.J. Design thinking to enhance the sustainable business modelling process–A workshop based on a value mapping process. J. Clean. Prod. 2016, 135, 1218–1232. [Google Scholar] [CrossRef]
- Müller, M. Design-driven innovation for sustainability: A new method for developing a sustainable value proposition. Int. J. Innov. Sci. 2012, 4, 11–24. [Google Scholar] [CrossRef]
- Joyce, A.; Paquin, R.L. The triple layered business model canvas: A tool to design more sustainable business models. J. Clean. Prod. 2016, 135, 1474–1486. [Google Scholar] [CrossRef]
- Morioka, S.N.; de Carvalho, M.M. A systematic literature review towards a conceptual framework for integrating sustainability performance into business. J. Clean. Prod. 2016, 136, 134–146. [Google Scholar] [CrossRef]
- Padin, C.; Ferro, C.; Wagner, B.; Sosa Valera, J.C.; Høgevold, N.M.; Svensson, G. Validating a triple bottom line construct and reasons for implementing sustainable business practices in companies and their business networks. Corp. Gov. Int. J. Bus. Soc. 2016, 16, 849–865. [Google Scholar] [CrossRef]
- França, C.L.; Broman, G.; Robèrt, K.H.; Basile, G.; Trygg, L. An approach to business model innovation and design for strategic sustainable development. J. Clean. Prod. 2017, 140, 155–166. [Google Scholar] [CrossRef]
- Kim, K.J.; Lim, C.H.; Heo, J.Y.; Lee, D.H.; Hong, Y.S.; Park, K. An evaluation scheme for product-service system models: Development of evaluation criteria and case studies. Serv. Bus. 2016, 10, 507–530. [Google Scholar] [CrossRef]
- Chou, C.J.; Chen, C.W.; Conley, C. An approach to assessing sustainable product-service systems. J. Clean. Prod. 2015, 86, 277–284. [Google Scholar] [CrossRef]
- Chiu, M.C.; Kuo, M.Y.; Kuo, T.C. A systematic methodology to develop business model of a product service system. Int. J. Ind. Eng. 2015, 22, 369–381. [Google Scholar]
- Singh, S.; Olugu, E.U.; Musa, S.N.; Mahat, A.B.; Wong, K.Y. Strategy selection for sustainable manufacturing with integrated AHP-VIKOR method under interval-valued fuzzy environment. Int. J. Adv. Manuf. Technol. 2016, 84, 547–563. [Google Scholar] [CrossRef]
- Buxel, H.; Esenduran, G.; Griffin, S. Strategic sustainability: Creating business value with life cycle analysis. Bus. Horiz. 2015, 58, 109–122. [Google Scholar] [CrossRef]
- Patala, S.; Jalkala, A.; Keränen, J.; Väisänen, S.; Tuominen, V.; Soukka, R. Sustainable value propositions: Framework and implications for technology suppliers. Ind. Market. Manag. 2016, 59, 144–156. [Google Scholar] [CrossRef]
- Olson, E.L. Perspective: The green innovation value chain: A tool for evaluating the diffusion prospects of green products. J. Prod. Innov. Manag. 2013, 30, 782–793. [Google Scholar] [CrossRef]
- Copani, G.; Rosa, P. DEMAT: Sustainability assessment of new flexibility-oriented business models in the machine tools industry. Int. J. Comput. Integr. Manuf. 2015, 28, 408–417. [Google Scholar] [CrossRef]
- Ueda, K.; Takenaka, T.; Váncza, J.; Monostori, L. Value creation and decision-making in sustainable society. CIRP Ann.-Manuf. Technol. 2009, 58, 681–700. [Google Scholar] [CrossRef]
- Abdelkafi, N.; Täuscher, K. Business models for sustainability from a system dynamics perspective. Organ. Environ. 2016, 29, 74–96. [Google Scholar] [CrossRef]
- Figge, F.; Hahn, T. Sustainable value added—Measuring corporate contributions to sustainability beyond eco-efficiency. Ecol. Econ. 2004, 48, 173–187. [Google Scholar] [CrossRef]
- Henriques, J.; Catarino, J. Sustainable value and cleaner production–research and application in 19 Portuguese SME. J. Clean. Prod. 2015, 96, 379–386. [Google Scholar] [CrossRef]
- Figge, F.; Hahn, T. Is green and profitable sustainable? Assessing the trade-off between economic and environmental aspects. Int. J. Prod. Econ. 2012, 140, 92–102. [Google Scholar] [CrossRef]
- Figge, F.; Hahn, T.; Daverio, C.; Persson, M.; Brunczel, B.; Wilhelm, A.; Mauritz, C. Sustainable Value of European Industry—A Value-Based Analysis of the Environmental Performance of European Manufacturing Companies. 2006. Available online: http://www.advance-project.org/concept/publications/index.html (accessed on 8 June 2017).
- Mondelaers, K.; Van Huylenbroeck, G.; Lauwers, L. Sustainable Value Analysis: Sustainability in a New Light Results of the EU SVAPPAS Project Analyse de la valeur durable: Le projet SVAPPAS de l’Union européenne éclaire la durabilité sous un jour nouveau Sustainable-Value-Analyse: Nachhaltigkeit in einem neuen Licht als Ergebnis des SVAPPAS-Projekts der EU. EuroChoices 2011, 10, 9–15. [Google Scholar]
- Kuosmanen, T.; Kuosmanen, N. How not to measure sustainable value (and how one might). Ecol. Econ. 2009, 69, 235–243. [Google Scholar] [CrossRef]
- Harik, R.; El Hachem, W.; Medini, K.; Bernard, A. Towards a holistic sustainability index for measuring sustainability of manufacturing companies. Int. J. Prod. Res. 2015, 53, 4117–4139. [Google Scholar] [CrossRef]
- Egilmez, G.; Kucukvar, M.; Tatari, O. Sustainability assessment of US manufacturing sectors: An economic input output-based frontier approach. J. Clean. Prod. 2013, 53, 91–102. [Google Scholar] [CrossRef]
- Afful-Dadzie, A.; Afful-Dadzie, E.; Turkson, C. A TOPSIS extension framework for re-conceptualizing sustainability measurement. Kybernetes 2016, 45, 70–86. [Google Scholar] [CrossRef]
- Menzel, V.; Smagin, J.; David, F. Can companies profit from greener manufacturing? Meas. Bus. Excel. 2010, 14, 22–31. [Google Scholar] [CrossRef]
- Tahir, A.C.; Darton, R.C. The process analysis method of selecting indicators to quantify the sustainability performance of a business operation. J. Clean. Prod. 2010, 18, 1598–1607. [Google Scholar] [CrossRef]
- Valkokari, K.; Valkokari, P.; Palomäki, K.; Uusitalo, T.; Reunanen, M.; Macchi, M.; Rana, P.; Prasanna Liyanage, J. Road-mapping the business potential of sustainability within the European manufacturing industry. Foresight 2014, 16, 360–384. [Google Scholar] [CrossRef]
- Gadenne, D.; Mia, L.; Sands, J.; Winata, L.; Hooi, G. The influence of sustainability performance management practices on organisational sustainability performance. J. Account. Organ. Chang. 2012, 8, 210–235. [Google Scholar] [CrossRef]
- Dahl, A.L. Achievements and gaps in indicators for sustainability. Ecol. Indic. 2012, 17, 14–19. [Google Scholar] [CrossRef]
- Journeault, M. The Integrated Scorecard in support of corporate sustainability strategies. J. Environ. Manag. 2016, 182, 214–229. [Google Scholar] [CrossRef] [PubMed]
- Sands, J.S.; Sands, J.S.; Rae, K.N.; Rae, K.N.; Gadenne, D.; Gadenne, D. An empirical investigation on the links within a sustainability balanced scorecard (SBSC) framework and their impact on financial performance. Account. Res. J. 2016, 29, 154–178. [Google Scholar] [CrossRef]
- Hansen, E.G.; Schaltegger, S. The sustainability balanced scorecard: A systematic review of architectures. J. Bus. Ethics 2016, 133, 193–221. [Google Scholar] [CrossRef]
- Pan, J.N.; Nguyen, H.T.N. Achieving customer satisfaction through product-service systems. Eur. J. Oper. Res. 2015, 247, 179–190. [Google Scholar] [CrossRef]
- Kastalli, I.V.; Van Looy, B.; Neely, A. Steering manufacturing firms towards service business model innovation. Calif. Manag. Rev. 2013, 56, 100–123. [Google Scholar] [CrossRef]
- Pádua, S.I.D.; Jabbour, C.J.C. Promotion and evolution of sustainability performance measurement systems from a perspective of business process management: From a literature review to a pentagonal proposal. Bus. Process Manag. J. 2015, 21, 403–418. [Google Scholar] [CrossRef]
- Searcy, C. Setting a course in corporate sustainability performance measurement. Meas. Bus. Excell. 2009, 13, 49–57. [Google Scholar] [CrossRef]
- Morioka, S.N.; Carvalho, M. Measuring sustainability in practice: Exploring the inclusion of sustainability into corporate performance systems in Brazilian case studies. J. Clean. Prod. 2016, 136, 123–133. [Google Scholar] [CrossRef]
- Jayakrishna, K.; Vinodh, S.; Anish, S. A Graph Theory approach to measure the performance of sustainability enablers in a manufacturing organization. Int. J. Sustain. Eng. 2016, 9, 47–58. [Google Scholar] [CrossRef]
- Brockhaus, S.; Fawcett, S.; Kersten, W.; Knemeyer, M. A framework for benchmarking product sustainability efforts: Using systems dynamics to achieve supply chain alignment. Benchmark. Int. J. 2016, 23, 127–164. [Google Scholar] [CrossRef]
- Carter, C.R.; Liane Easton, P. Sustainable supply chain management: Evolution and future directions. Int. J. Phys. Distrib. Logist. Manag. 2011, 41, 46–62. [Google Scholar] [CrossRef]
- Ashby, A.; Leat, M.; Hudson-Smith, M. Making connections: A review of supply chain management and sustainability literature. Supply Chain Manag. Int. J. 2012, 17, 497–516. [Google Scholar] [CrossRef]
- Marchet, G.; Melacini, M.; Perotti, S. Environmental sustainability in logistics and freight transportation: A literature review and research agenda. J. Manuf. Technol. Manag. 2014, 25, 775–811. [Google Scholar] [CrossRef]
- Ortas, E.; Moneva, M.J.; Álvarez, I. Sustainable supply chain and company performance: A global examination. Supply Chain Manag. Int. J. 2014, 19, 332–350. [Google Scholar] [CrossRef]
- Bayat, A.; Sundararajan, S.; Gustafson, H.R., Jr.; Zimmers, E.W., Jr. Sustainably driven supply chains. Ind. Eng. 2011, 43, 26–31. [Google Scholar]
- Abbasi, M.; Nilsson, F. Themes and challenges in making supply chains environmentally sustainable. Supply Chain Manag. Int. J. 2012, 17, 517–530. [Google Scholar] [CrossRef]
- Varsei, M.; Soosay, C.; Fahimnia, B.; Sarkis, J. Framing sustainability performance of supply chains with multidimensional indicators. Supply Chain Manag. Int. J. 2014, 19, 242–257. [Google Scholar] [CrossRef]
- Ferreira, L.M.D.; Silva, C.; Azevedo, S.G. An environmental balanced scorecard for supply chain performance measurement. Benchmark. Int. J. 2016, 23, 1398–1422. [Google Scholar] [CrossRef]
- Chiarini, A. Designing an environmental sustainable supply chain through ISO 14001 standard. Manag. Environ. Qual. Int. J. 2012, 24, 16–33. [Google Scholar] [CrossRef]
- El Saadany, A.M.A.; Jaber, M.Y.; Bonney, M. Environmental performance measures for supply chains. Manag. Res. Rev. 2011, 34, 1202–1221. [Google Scholar] [CrossRef]
- Bai, C.; Sarkis, J.; Wei, X.; Koh, L. Evaluating ecological sustainable performance measures for supply chain management. Supply Chain Manag. Int. J. 2012, 17, 78–92. [Google Scholar] [CrossRef]
- Rao, C.; Goh, M.; Zheng, J. Decision Mechanism for Supplier Selection under Sustainability. Int. J. Inf. Technol. Decis. Mak. 2016, 16, 87. [Google Scholar] [CrossRef]
- Wong, C.Y.; Wong, C.W.; Boon-itt, S. Integrating environmental management into supply chains: A systematic literature review and theoretical framework. Int. J. Phys. Distrib. Logist. Manag. 2015, 45, 43–68. [Google Scholar] [CrossRef]
- Wu, K.J.; Liao, C.J.; Tseng, M.; Chiu, K.K.S. Multi-attribute approach to sustainable supply chain management under uncertainty. Ind. Manag. Data Syst. 2016, 116, 777–800. [Google Scholar] [CrossRef]
- Zhou, X.; Pedrycz, W.; Kuang, Y.; Zhang, Z. Type-2 fuzzy multi-objective DEA model: An application to sustainable supplier evaluation. Appl. Soft Comput. 2016, 46, 424–440. [Google Scholar] [CrossRef]
- Govindan, K.; Paam, P.; Abtahi, A.R. A fuzzy multi-objective optimization model for sustainable reverse logistics network design. Ecol. Indic. 2016, 67, 753–768. [Google Scholar] [CrossRef]
- Boonsothonsatit, K.; Kara, S.; Ibbotson, S.; Kayis, B. Development of a Generic decision support system based on multi-Objective Optimisation for Green supply chain network design (GOOG). J. Manuf. Technol. Manag. 2015, 26, 1069–1084. [Google Scholar] [CrossRef]
- Liyanage, J.P. Operations and maintenance performance in production and manufacturing assets: The sustainability perspective. J. Manuf. Technol. Manag. 2007, 18, 304–314. [Google Scholar] [CrossRef]
- Winroth, M.; Almström, P.; Andersson, C. Sustainable production indicators at factory level. J. Manuf. Technol. Manag. 2016, 27, 842–873. [Google Scholar] [CrossRef]
- Faulkner, W.; Badurdeen, F. Sustainable Value Stream Mapping (Sus-VSM): Methodology to visualize and assess manufacturing sustainability performance. J. Clean. Prod. 2014, 85, 8–18. [Google Scholar] [CrossRef]
- Xia, D.; Yu, Q.; Gao, Q.; Cheng, G. Sustainable technology selection decision-making model for enterprise in supply chain: Based on a modified strategic balanced scorecard. J. Clean. Prod. 2017, 141, 1337–1348. [Google Scholar] [CrossRef]
- Brown, A.; Amundson, J.; Badurdeen, F. Sustainable value stream mapping (Sus-VSM) in different manufacturing system configurations: Application case studies. J. Clean. Prod. 2014, 85, 164–179. [Google Scholar] [CrossRef]
- Aguado, S.; Alvarez, R.; Domingo, R. Model of efficient and sustainable improvements in a lean production system through processes of environmental innovation. J. Clean. Prod. 2013, 47, 141–148. [Google Scholar] [CrossRef]
- Vinodh, S.; Ruben, R.B.; Asokan, P. Life cycle assessment integrated value stream mapping framework to ensure sustainable manufacturing: A case study. Clean Technol. Environ. Policy 2016, 18, 279–295. [Google Scholar] [CrossRef]
- Bilge, P.; Badurdeen, F.; Seliger, G.; Jawahir, I.S. A novel manufacturing architecture for sustainable value creation. CIRP Ann.-Manuf. Technol. 2016, 65, 455–458. [Google Scholar] [CrossRef]
- Kassahun, A.; du Chatenier, E.; Bots, P.; Hofstede, G.; Bloemhof, J.; Scholten, H.; Korver, S.; Beulens, A. QChain–integrating social, environmental and economic value: A tool to support innovation in production chains. J. Chain Netw. Sci. 2011, 11, 167–176. [Google Scholar] [CrossRef]
- Le Bourhis, F.; Kerbrat, O.; Hascoët, J.Y.; Mognol, P. Sustainable manufacturing: Evaluation and modeling of environmental impacts in additive manufacturing. Int. J. Adv. Manuf. Technol. 2013, 69, 1927–1939. [Google Scholar] [CrossRef]
- Petros Sebhatu, S.; Enquist, B. ISO 14001 as a driving force for sustainable development and value creation. TQM Mag. 2007, 19, 468–482. [Google Scholar] [CrossRef]
- Batalha, G.F.; Roszak, M.T.; da Silva, I.B.; Agostinho, O.L.; Dobrzański, L.A. Towards a design for ecological management and product sustainability–European and Brazilian approaches. Mater. Sci. Eng. 2013, 64, 34–39. [Google Scholar]
- Abidin, N.Z.; Pasquire, C.L. Revolutionize value management: A mode towards sustainability. Int. J. Proj. Manag. 2007, 25, 275–282. [Google Scholar] [CrossRef]
- Fellows, R.; Liu, A. Impact of participants’ values on construction sustainability. Proc. Inst. Civil Eng. Eng. Sustain. 2008, 161, 219–227. [Google Scholar] [CrossRef]
- Catarino, J.; Henriques, J.J.; Maia, A.; Alexandre, J.; Rodrigues, F.; Camocho, D. From cleaner production and value management to sustainable value. Int. J. Sustain. Eng. 2011, 4, 96–108. [Google Scholar] [CrossRef]
- Yunus, R.; Yang, J. Critical sustainability factors in industrialised building systems. Constr. Innov. 2012, 12, 447–463. [Google Scholar] [CrossRef]
- Akadiri, P.O.; Olomolaiye, P.O. Development of sustainable assessment criteria for building materials selection. Eng. Constr. Archit. Manag. 2012, 19, 666–687. [Google Scholar] [CrossRef]
- Alarcon, B.; Aguado, A.; Manga, R.; Josa, A. A value function for assessing sustainability: Application to industrial buildings. Sustainability 2010, 3, 35–50. [Google Scholar] [CrossRef]
- Arroyo, P.; Tommelein, I.D.; Ballard, G. Selecting Globally Sustainable Materials: A Case Study Using Choosing by Advantages. J. Constr. Eng. Manag. 2015, 142, 05015015. [Google Scholar] [CrossRef]
- Badurdeen, F.; Liyanage, J.P. Sustainable value co-creation through mass customisation: A framework. Int. J. Sustain. Manuf. 2011, 2, 180–203. [Google Scholar] [CrossRef]
- Badurdeen, F.; Goldsby, T.J.; Iyengar, D.; Jawahir, I.S. Transforming supply chains to create sustainable value for all stakeholders. In Treatise on Sustainability Science and Engineering; Springer: Dordrecht, The Netherlands, 2013; pp. 311–338. [Google Scholar]
- Badurdeen, F.; Shuaib, M.A.; Lu, T.; Jawahir, I.S. Sustainable Value Creation in Manufacturing at Product and Process Levels: Metrics-Based Evaluation. In Handbook of Manufacturing Engineering and Technology; Springer: London, UK, 2015; pp. 3343–3375. [Google Scholar]
- Bakhoum, E.S.; Brown, D.C. An automated decision support system for sustainable selection of structural materials. Int. J. Sustain. Eng. 2015, 8, 80–92. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Cruz, J. Economic sustainability of closed loop supply chains: A holistic model for decision and policy analysis. Decis. Support Syst. 2015, 77, 67–86. [Google Scholar] [CrossRef]
- Brent, A.C.; Labuschagne, C. An appraisal of social aspects in project and technology life cycle management in the process industry. Manag. Environ. Qual. Int. J. 2007, 18, 413–426. [Google Scholar] [CrossRef]
- Coskun, S.; Ozgur, L.; Polat, O.; Gungor, A. A model proposal for green supply chain network design based on consumer segmentation. J. Clean. Prod. 2016, 110, 149–157. [Google Scholar] [CrossRef]
- Cuadrado, J.; Zubizarreta, M.; Rojí, E.; Larrauri, M.; Álvarez, I. Sustainability assessment methodology for industrial buildings: Three case studies. Civil Eng. Environ. Syst. 2016, 33, 106–124. [Google Scholar] [CrossRef]
- Del Caño, A.; Gómez, D.; de la Cruz, M.P. Uncertainty analysis in the sustainable design of concrete structures: A probabilistic method. Constr. Build. Mater. 2012, 37, 865–873. [Google Scholar] [CrossRef]
- Djassemi, M. A computer-aided approach to material selection and environmental auditing. J. Manuf. Technol. Manag. 2012, 23, 704–716. [Google Scholar] [CrossRef]
- Florez, L.; Castro, D.; Irizarry, J. Measuring sustainability perceptions of construction materials. Constr. Innov. 2013, 13, 217–234. [Google Scholar] [CrossRef]
- Fujii, M.; Hayashi, K.; Ito, H.; Ooba, M. The resource occupancy to capacity ratio indicator—A common unit to measure sustainability. Ecol. Indic. 2014, 46, 52–58. [Google Scholar] [CrossRef]
- Gervásio, H.; da Silva, L.S. A probabilistic decision-making approach for the sustainable assessment of infrastructures. Expert Syst. Appl. 2012, 39, 7121–7131. [Google Scholar] [CrossRef]
- Gheorghe, R.; Xirouchakis, P. Decision-based methods for early phase sustainable product design. Int. J. Eng. Educ. 2007, 23, 1065–1080. [Google Scholar]
- Gudem, M.; Steinert, M.; Welo, T.; Leifer, L. Redefining customer value in lean product development design projects. J. Eng. Des. Technol. 2013, 11, 71–89. [Google Scholar] [CrossRef]
- Hassan, M.F.; Saman, M.Z.M.; Sharif, S.; Omar, B. Sustainability evaluation of alternative part configurations in product design: Weighted decision matrix and artificial neural network approach. Clean Technol. Environ. Policy 2016, 18, 63–79. [Google Scholar] [CrossRef]
- Henry, M.; Kato, Y. An assessment framework based on social perspectives and Analytic Hierarchy Process: A case study on sustainability in the Japanese concrete industry. J. Eng. Technol. Manag. 2011, 28, 300–316. [Google Scholar] [CrossRef]
- Hu, J.; Cardin, M.A. Generating flexibility in the design of engineering systems to enable better sustainability and lifecycle performance. Res. Eng. Des. 2015, 26, 121–143. [Google Scholar] [CrossRef]
- Inoue, M.; Yamada, S.; Yamada, T.; Bracke, S. An Upgradable Product Design Method for Improving Performance, CO2 Savings, and Production Cost Reduction: Vacuum Cleaner Case Study. Int. J. Supply Chain Manag. 2014, 3, 100–106. [Google Scholar]
- Jayakrishna, K.; Vimal, K.E.K.; Vinodh, S. ANP based sustainable concept selection. J. Model. Manag. 2015, 10, 118–136. [Google Scholar]
- Jayakrishna, K.; Jayakrishna, K.; Girubha, R.J.; Girubha, R.J.; Vinodh, S.; Vinodh, S. Comparison of sustainability characteristics of conventional and CNC turning processes: A case study. J. Eng. Des. Technol. 2016, 14, 422–445. [Google Scholar] [CrossRef]
- Jensen, P.A.; Maslesa, E. Value based building renovation–A tool for decision-making and evaluation. Build. Environ. 2015, 92, 1–9. [Google Scholar] [CrossRef]
- Yi, J.; Ji, B.; Guan, Y.; Dong, J.; Li, C. Research on evaluation methodologies of product life cycle engineering design (LCED) and development of its tools. Int. J. Comput. Integr. Manuf. 2008, 21, 923–942. [Google Scholar]
- Kim, S.; Moon, S.K. Sustainable platform identification for product family design. J. Clean. Prod. 2016, 143, 567–581. [Google Scholar] [CrossRef]
- Kimita, K.; Shimomura, Y.; Arai, T. A customer value model for sustainable service design. CIRP J. Manuf. Sci. Technol. 2009, 1, 254–261. [Google Scholar] [CrossRef]
- Lombera, J.T.S.J.; Rojo, J.C. Industrial building design stage based on a system approach to their environmental sustainability. Constr. Build. Mater. 2010, 24, 438–447. [Google Scholar] [CrossRef]
- Ma, J.; Kremer, G.E.O. A sustainable modular product design approach with key components and uncertain end-of-life strategy consideration. Int. J. Adv. Manuf. Technol. 2016, 85, 741–763. [Google Scholar] [CrossRef]
- Malmgren, L.; Elfborg, S.; Mjörnell, K. Development of a decision support tool for sustainable renovation—A case study. Struct. Surv. 2016, 34, 3–11. [Google Scholar] [CrossRef]
- Mayyas, A.T.; Qattawi, A.; Mayyas, A.R.; Omar, M. Quantifiable measures of sustainability: A case study of materials selection for eco-lightweight auto-bodies. J. Clean. Prod. 2013, 40, 177–189. [Google Scholar] [CrossRef]
- Mendoza, G.A.; Prabhu, R. Evaluating multi-stakeholder perceptions of project impacts: A participatory value-based multi-criteria approach. Int. J. Sustain. Dev. World Ecol. 2009, 16, 177–190. [Google Scholar] [CrossRef]
- Metaxas, I.N.; Koulouriotis, D.E.; Spartalis, S.H. A multicriteria model on calculating the Sustainable Business Excellence Index of a firm with fuzzy AHP and TOPSIS. Benchmark. Int. J. 2016, 23, 1522–1557. [Google Scholar] [CrossRef]
- Nallusamy, S.; Ganesan, M.; Balakannan, K.; Shankar, C. Environmental sustainability evaluation for an automobile manufacturing industry using multi-grade fuzzy approach. Int. J. Eng. Res. Afr. 2016, 19, 123–129. [Google Scholar] [CrossRef]
- Nelms, C.E.; Russell, A.D.; Lence, B.J. Assessing the performance of sustainable technologies: A framework and its application. Build. Res. Inf. 2007, 35, 237–251. [Google Scholar] [CrossRef]
- Ojanen, V.; Ahonen, T.; Reunanen, M.; Hanski, J. Towards availability and sustainability in customer value assessment of asset management services. Int. J. Innov. Sustain. Dev. 2012, 6, 368–391. [Google Scholar] [CrossRef]
- Olinto, A.C. Vector space theory of sustainability assessment of industrial processes. Clean Technol. Environ. Policy 2014, 16, 1815–1820. [Google Scholar] [CrossRef]
- Orji, I.; Wei, S. A decision support tool for sustainable supplier selection in manufacturing firms. J. Ind. Eng. Manag. 2014, 7, 1293. [Google Scholar] [CrossRef]
- Orji, I.J.; Wei, S. Dynamic modeling of sustainable operation in green manufacturing environment. J. Manuf. Technol. Manag. 2015, 26, 1201–1217. [Google Scholar] [CrossRef]
- Peruzzini, M.; Germani, M. Design for sustainability of product-service systems. Int. J. Agile Syst. Manag. 2014, 7, 206–219. [Google Scholar] [CrossRef]
- Peruzzini, M.; Marilungo, E.; Germani, M. Structured requirements elicitation for product-service system. Int. J. Agile Syst. Manag. 2015, 8, 189–218. [Google Scholar] [CrossRef]
- Russell-Smith, S.V.; Lepech, M.D.; Fruchter, R.; Meyer, Y.B. Sustainable target value design: Integrating life cycle assessment and target value design to improve building energy and environmental performance. J. Clean. Prod. 2015, 88, 43–51. [Google Scholar] [CrossRef]
- Sakao, T.; Shimomura, Y. Service Engineering: A novel engineering discipline for producers to increase value combining service and product. J. Clean. Prod. 2007, 15, 590–604. [Google Scholar] [CrossRef]
- Smith, R.L.; Ruiz-Mercado, G.J. A method for decision making using sustainability indicators. Clean Technol. Environ. Policy 2014, 16, 749–755. [Google Scholar] [CrossRef]
- Song, W.; Sakao, T. A customization-oriented framework for design of sustainable product/service system. J. Clean. Prod. 2017, 140, 1672–1685. [Google Scholar] [CrossRef]
- Sproedt, A.; Plehn, J.; Schönsleben, P.; Herrmann, C. A simulation-based decision support for eco-efficiency improvements in production systems. J. Clean. Prod. 2015, 105, 389–405. [Google Scholar] [CrossRef]
- Suresh, P.; Ramabalan, S.; Natarajan, U. Integration of DFE and DFMA for the sustainable development of an automotive component. Int. J. Sustain. Eng. 2016, 9, 107–118. [Google Scholar] [CrossRef]
- Tambouratzis, T.; Karalekas, D.; Moustakas, N. A methodological study for optimizing material selection in sustainable product design. J. Ind. Ecol. 2014, 18, 508–516. [Google Scholar] [CrossRef]
- Vinodh, S.; Jayakrishna, K. Environmental impact minimisation in an automotive component using alternative materials and manufacturing processes. Mater. Des. 2011, 32, 5082–5090. [Google Scholar] [CrossRef]
- Vinodh, S.; Rathod, G. Application of life cycle assessment and Monte Carlo simulation for enabling sustainable product design. J. Eng. Des. Technol. 2014, 12, 307–315. [Google Scholar] [CrossRef]
- Vinodh, S.; Arvind, K.R.; Somanaathan, M. Tools and techniques for enabling sustainability through lean initiatives. Clean Technol. Environ. Policy 2011, 13, 469–479. [Google Scholar] [CrossRef]
- Wang, W.; Tseng, M.M. Design for sustainable manufacturing: Applying modular design methodology to manage product end-of-life strategy. Int. J. Prod. Lifecycle Manag. 2011, 5, 164–182. [Google Scholar] [CrossRef]
- Wever, R.; Vogtländer, J. Design for the Value of Sustainability. In Handbook of Ethics, Values, and Technological Design: Sources, Theory, Values and Application Domains; Springer: Berlin/Heidelberg, Germany, 2015; pp. 513–549. [Google Scholar]
- Whalen, K.; Peck, D. In the Loop: Sustainable, Circular Product Design and Critical Materials (Special Issue on Design and Manufacturing for Environmental Sustainability). Int. J. Autom. Technol. 2014, 8, 664–676. [Google Scholar]
- Xing, K.; Wang, H.F.; Qian, W. A sustainability-oriented multi-dimensional value assessment model for product-service development. Int. J. Prod. Res. 2013, 51, 5908–5933. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Shen, L.; Skitmore, M. A prototype system dynamic model for assessing the sustainability of construction projects. Int. J. Proj. Manag. 2014, 32, 66–76. [Google Scholar] [CrossRef]
- Kara, S.; Ibbotson, S.; Kayis, B. Sustainable product development in practice: An international survey. J. Manuf. Technol. Manag. 2014, 25, 848–872. [Google Scholar] [CrossRef]
- Soota, T. Integrated approach to multi-criteria decision making for sustainable product development. Int. J. Qual. Res. 2014, 8, 543–556. [Google Scholar]
- Collopy, P.D.; Hollingsworth, P.M. Value-driven design. J. Aircr. 2011, 48, 749–759. [Google Scholar] [CrossRef]
- Mullan, C.; Price, M.; Soban, D.; Butterfield, J.; Murphy, A. An analytical study of surplus value using a Value Driven Design methodology. In Proceedings of the 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, including the AIAA Balloon Systems Conference and 19th AIAA Lighter-Than, Virginia Beach, VA, USA, 20–22 September 2011; p. 6838. [Google Scholar]
- Price, M.; Soban, D.; Mullan, C.; Butterfield, J.; Murphy, A. A novel method to enable trade-offs across the whole product life of an aircraft using value driven design. J. Aerosp. Oper. 2012, 1, 359–375. [Google Scholar]
- Curran, R.; van Blokland, W.B.; Abu-Kias, T.; Repco, M.J.F.; Sprengers, Y.L.J.; Van Der Zwet, P.S. Value Operations Methodology for Value Driven Design: Medium Range Passenger Airliner Validation. In Proceedings of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2010; p. 847. [Google Scholar]
- Bertoni, A.; Bertoni, M.; Panarotto, A.; Johansson, C.; Larsson, T. Value-driven product service systems development: Methods and industrial application. CIRP J. Manuf. Sci. Technol. 2016, 15, 42–55. [Google Scholar] [CrossRef]
- Bertoni, M.; Bertoni, A. Models for Value-driven engineering design. In Proceedings of the 14th International Design Conference, Cavtat, Croatia, 16–19 May 2016; pp. 1195–1204. [Google Scholar]
- Ross, A.M.; Rhodes, D.H. April, Architecting systems for value robustness: Research motivations and progress. In Proceedings of the 2008 2nd Annual IEEE Systems Conference, Montreal, QC, Canada, 7–10 April 2008; pp. 1–8. [Google Scholar]
- Mukhopadhyay, T.; Chowdhury, R.; Chakrabarti, A. Reliability analysis of response surface based damage identification method. Sci. Eng. Res. 2013, 4, N220–N223. [Google Scholar]
- Domingos, P. A few useful things to know about machine learning. Commun. ACM 2012, 55, 78–87. [Google Scholar] [CrossRef]
Identifier | Description | Identifier | Description |
---|---|---|---|
A1 | Risk mitigation and compliance | A7 | External legitimacy pressure |
A2 | Process cost reduction/ improved efficiency | A8 | Taxation reduction |
A3 | Improved supply chain logistics | A9 | Shareholder value creation |
A4 | Product differentiation | A10 | Financial benefits |
A5 | New markets penetration and assets growth | A11 | Becoming investment target for larger firms |
A6 | Corporate reputation, branding and image | A12 | Building networks/learning from outsiders |
Contribution | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Laszlo and Cooperrider [45] | Y | Y | Y | Y | Y | |||||||
Laszlo [46] | Y | Y | Y | Y | Y | |||||||
Moore and Manring [47] | Y | Y | Y | |||||||||
Kronborg Jensen et al. [48] | Y | |||||||||||
Kurapatskie and Darnall [49] | Y | |||||||||||
Papadopoulos et al. [50] | Y | Y | Y | |||||||||
Chou et al. [51] | Y | Y | ||||||||||
Hang and Chunguang [52] | Y | |||||||||||
Tollin et al. [53] | Y | Y | ||||||||||
Ford and Despeisse [54] | Y | Y | Y | |||||||||
Hsu et al. [55] | Y | |||||||||||
Roome and Louche [56] | Y | |||||||||||
Kumar and Rahman [57] | Y | Y | Y | |||||||||
Gómez-Bezares et al. [58] | Y | Y | Y | |||||||||
Li et al. [59] | Y | |||||||||||
Severo et al. [60] | Y | |||||||||||
Yang et al. [61] | Y | Y | Y | Y |
Contribution | F1 | F2 | F3 | F4 | Simulation Model | Ambiguity/Uncertainty Model | Modeling Method |
---|---|---|---|---|---|---|---|
Akadiri and Olomolaiye [159] | Y | Y | Factor analysis | ||||
Alarcon et al. [160] | Y | p | Value function | ||||
Arroyo et al. [161] | Y | p | Choosing by Advantage | ||||
Badurdeen and Liyanage [162] | Y | Y | PSI (Product Sustainability Index) | ||||
Badurdeen at al. [163] | Y | p | Y | PSI (Product Sustainability Index) | |||
Badurdeen at al. [164] | Y | p | Y | PSI (Product Sustainability Index) and LCC | |||
Bakhoum and Brown [165] | Y | AHP and TOPSIS | |||||
Bhattacharjee and Cruz [166] | p | p | Y | System Dynamics | What if scenarios | Cost benefit analysis | |
Brent and Labuschagne [167] | Y | Y | LCI (Life Cycle Inventory) and LCIA (Life Cycle Impact Assessment) | ||||
Coskun et al. [168] | Y | What if scenarios | Total utility analysis | ||||
Cuadrado et al. [169] | Y | Y | Sensitivity analysis | AHP | |||
del Caño et al. [170] | Y | p | Montecarlo simulation | AHP | |||
Djassemi [171] | Y | Cambridge Engineering Selector | |||||
Florez et al. [172] | Y | Sustainability measurement instrument | |||||
Fujii et al. [173] | Y | Y | ROC (Resource Occupancy ratio) | ||||
Gervásio and da Silva [174] | Y | Y | Montecarlo simulation | PROMETHEE and AHP | |||
Gheorghe and Xirouchakis [175] | Y | Fuzzy numbers | MCDM approach | ||||
Gudem et al. [176] | Y | Value chart | |||||
Hassan et al. [177] | Y | Y | AHP with neural networks | ||||
Henry and Kato [178] | Y | Y | AHP | ||||
Hu and Cardin [179] | Y | Montecarlo simulation | NPV | ||||
Inoue et al. [180] | Y | p | Upgradable Product Design Method | ||||
Jayakrishna et al. [181] | Y | Y | ANP | ||||
Jayakrishna et al. [182] | Y | Y | Production cost | ||||
Jensen and Maslesa [183] | Y | p | RENO-EVALUE | ||||
Jianjun et al. [184] | Y | Fuzzy logic | LCA | ||||
Kim and Moon [185] | Y | p | p | p | Fuzzy logic | GRA (Grey Relational Analysis) and LCC | |
Kimita et al. [186] | Y | Satisfaction–Attribute function | |||||
Lombera and Rojo [187] | Y | p | Y | VSA (Sustainable Value) index | |||
Ma and Kremer [188] | Y | Y | Fuzzy logic | MSSI (Module Sustainability Index) and LCC | |||
Malmgren et al. [189] | Y | Y | Y | p | What if scenarios | LCA and LCC | |
Mayyas et al. [190] | Y | PSI (Preference Selection Index) and PCA (Principal Component Analysis) | |||||
Mendoza and Prabhu [191] | Y | AHP with tree mapping | |||||
Metaxas et al. [192] | Y | Fuzzy logic | Sustainable Business Excellence Index (SBEI) using AHP and TOPSIS | ||||
Nallusamy et al. [193] | Y | Fuzzy logic | Environmental Sustainability Index (ESI) | ||||
Nelms et al. [194] | Y | p | p | P (narrative scale) | |||
Ojanen at al. [195] | Y | Y | What if scenarios | QFD and LCC/LCP model | |||
Olinto [196] | Y | S (Sustainability index) | |||||
Orji and Wei [197] | Y | Fuzzy logic | DEMATEL and TOPSIS | ||||
Orji and Wei [198] | Y | p | p | System Dynamics | Fuzzy logic | TOPSIS | |
Peruzzini and Germani [199] | Y | Y | What if scenarios | LCA and SA (sustainability Assessment) | |||
Peruzzini et al. [200] | Y | QFD | |||||
Russell-Smith et al. [201] | Y | p | LCA and TVD (Target Value Design) | ||||
Sakao and Shimomura [202] | Y | Service Engineering | |||||
Smith and Ruiz-Mercado [203] | Y | Utility analysis | |||||
Song and Sakao [204] | Y | p | p | Rough numbers | HOQ, TOPSIS, Multi Objective Optimization (MOM) | ||
Sproedt et al. [205] | Y | Y | Discrete Event | LCA | |||
Suresh et al. [206] | Y | Y | LCA | ||||
Tambouratzis et al. [207] | Y | LCA and EI (Environmental impact) index | |||||
Vinodh and Jayakrishna [208] | Y | Y | LCA | ||||
Vinodh and Rathod [209] | Y | Y | Montecarlo simulation | LCA | |||
Vinodh et al. [210] | Y | Fuzzy logic | QFD | ||||
Wang and Tseng [211] | Y | Y | LCCM (Life Cycle Commonality Metrics) and cost benefit analysis | ||||
Wever and Vogtländer [212] | p | p | p | Y | LCA and Cost/Value analysis | ||
Whalen and Peck [213] | p | (card game) | Card game—serious game | ||||
Xing et al. [214] | Y | Y | LCA and NPV (Net Present Value) | ||||
Zhang et al. [215] | Y | Y | p | Y | System Dynamics | SDV (Sustainable Development Value) |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertoni, M. Introducing Sustainability in Value Models to Support Design Decision Making: A Systematic Review. Sustainability 2017, 9, 994. https://doi.org/10.3390/su9060994
Bertoni M. Introducing Sustainability in Value Models to Support Design Decision Making: A Systematic Review. Sustainability. 2017; 9(6):994. https://doi.org/10.3390/su9060994
Chicago/Turabian StyleBertoni, Marco. 2017. "Introducing Sustainability in Value Models to Support Design Decision Making: A Systematic Review" Sustainability 9, no. 6: 994. https://doi.org/10.3390/su9060994
APA StyleBertoni, M. (2017). Introducing Sustainability in Value Models to Support Design Decision Making: A Systematic Review. Sustainability, 9(6), 994. https://doi.org/10.3390/su9060994