Electrical Energy Storage Systems Feasibility; the Case of Terceira Island
Abstract
:1. Introduction
2. Literature Review
2.1. Electrical Energy Storage Systems
2.2. Energy Economics
3. Methodology
3.1. Characterization of Terceira Island Electricity Demand and Supply System
3.2. Technical Feasibility Analysis
3.3. Cost Effectiveness Analysis
4. Results and Discussion
4.1. Technical Feasibility Analysis
4.2. Cost-Effectiveness Analysis
4.2.1. Scenario 1—Pumped Hydro System in Morião-Nasce Água
4.2.2. Scenario 2—Batteries
4.2.3. PHS and Battery System Comparison
4.3. Sensitivity Analysis Regarding the Power Capacity
4.4. Sensitivity Analysis Regarding the Dispatched Energy
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jacobson, M.Z.; Delucchi, M.A. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 2011, 39, 1154–1169. [Google Scholar] [CrossRef]
- Duić, N.; Carvalho, M.G. Increasing renewable energy sources in island energy supply: Case study Porto Santo. Renew. Sustain. Energy Rev. 2004, 8, 383–399. [Google Scholar] [CrossRef]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.Y.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Parfomak, P.W. Energy Storage for Power Grids and Electric Transportation: A Technology Assessment. Available online: http://fas.org/sgp/crs/misc/R42455.pdf (accessed on 30 June 2014).
- Zakeri, B.; Syri, S. Electrical energy storage systems: A comparative life cycle cost analysis. Renew. Sustain. Energy Rev. 2015, 42, 569–596. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Zafirakis, D.; Kavadias, K. Techno-economic comparison of energy storage systems for island autonomous electrical networks. Renew. Sustain. Energy Rev. 2009, 13, 378–392. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Zafirakis, D.; Kondili, E. Optimum sizing of photovoltaic-energy storage systems for autonomous small islands. Eletr. Power Energy Syst. 2010, 32, 24–36. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Kapsali, M.; Kavadias, K.A. Energy balance analysis of wind-based pumped hydro storage systems in remote island electrical networks. Appl. Energy 2010, 87, 2427–2437. [Google Scholar] [CrossRef]
- Battistelli, C.; Baringo, L.; Conejo, A.J. Optimal energy management of small electric energy systems including V2G facilities and renewable energy sources. Electr. Power Syst. Res. 2012, 92, 50–59. [Google Scholar] [CrossRef]
- Parvizimosaed, M.; Farmani, F.; Anvari-Moghaddam, A. Optimal energy management of a micro-grid with renewable energy resources and demand response. J. Renew. Sustain. Energy 2013, 5, 053148. [Google Scholar] [CrossRef]
- Maheri, A. Multi-objective design optimization of standalone hybrid wind-PV-diesel systems under uncertainties. Renew. Energy 2014, 66, 650–661. [Google Scholar] [CrossRef]
- Joe, T.; John, B.; Keith, P. Managing Innovation, 3rd ed.; Wiley: West Sussex, UK, 2005; Available online: https://pt.scribd.com/doc/133224039/Tidd-Managing-Innovation (accessed on 23 June 2017).
- Brandt, A.R.; Dale, M.; Bamhart, C.J. Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach. Energy 2013, 62, 235–247. [Google Scholar] [CrossRef]
- Bueno, C.; Carta, J.A. Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands. Renew. Sustain. Energy Rev. 2006, 10, 312–340. [Google Scholar] [CrossRef]
- Blechinger, B.; Seguin, R.; Calder, C.; Bertheau, P.; Breyer, C. Assessment of the Global Potential for Renewable Energy Storage Systems on Small Islands. Energy Procedia 2014, 46, 325–331. [Google Scholar] [CrossRef]
- Calise, F.; Cipollina, A.; d’Accadia, M.D.; Piacentino, A. A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment. Appl. Energy 2014, 135, 675–693. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Lu, L. A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island. Appl. Energy 2014, 121, 149–158. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Lu, L. Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island. Energy Convers. Manag. 2014, 79, 387–397. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Peng, J. Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization. Appl. Energy 2015, 137, 649–659. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Lu, L.; Peng, J. Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong. Renew. Energy 2014, 69, 7–15. [Google Scholar] [CrossRef]
- Papaefthymiou, S.V.; Papathanassiou, S.A. Optimum sizing of wind-pumped-storage hybrid power stations in island systems. Renew. Energy 2014, 64, 187–196. [Google Scholar] [CrossRef]
- Rodrigues, E.M.G.; Godina, R.; Santos, S.F.; Bizuayehu, A.W.; Contreras, J.; Catalão, J.P.S. Energy storage systems supporting increased penetration of renewables in islanded systems. Energy 2014, 75, 265–280. [Google Scholar] [CrossRef]
- ARUP. Five Minute Guide to Electricity Storage Technologies; ARUP: London, UK, 2014; Available online: https://www.arup.com/en/publications/Promotional-Materials/Section/Five-minute-guide-to-electricity-storage (accessed on 30 June 2014).
- Jung, J. Armazenamento de Energia em Smart Grids (Storage of Energy in Smart Grids); Universidade Federal do Rio Grande do Sul: Porto Alegre, Brazil, 2010; Available online: http://hdl.handle.net/10183/33071 (accessed on 30 June 2015).
- Leão, R.P.S.; Antunes, F.L.M.; Lourenço, T.G.M.; Andrade, K.R., Jr. A Comprehensive Overview on Wind Power Integration to the Power Grid, IEEE Latin America Transactions. IEEE Latin Am. Trans. 2009, 7, 620–629. Available online: http://www.ewh.ieee.org/reg/9/etrans/ieee/issues/vol07/vol7issue6Dec.2009/7TLA6_02PastoraSaraivaLeao.pdf (accessed on 30 June 2015). [CrossRef]
- Xiong, Y.; Jayaweera, D. Performance assessment of smart distribution networks with strategic operation of battery electric vehicles. J. Renew. Sustain. Energy 2015, 7, 023103. [Google Scholar] [CrossRef]
- Ponte, C.C. Modelação de Sistema de Armazenamento por Bombagem de Água em São Miguel (São Miguel Reversible Pumping System‘s Modelling); Instituto Superior Técnico: Lisboa, Portugal, 2012; Available online: https://fenix.tecnico.ulisboa.pt/downloadFile/395144976206/dissertacao.pdf (accessed on 30 June 2014).
- Cho, J.; Jeong, S.; Kim, Y. Commercial and research battery technologies for electrical energy storage applications. Prog. Energy Combust. Sci. 2015, 48, 84–101. [Google Scholar] [CrossRef]
- Maidonis, T. Facilitating Energy Storage to Allow High Penetration of Intermittent Renewable Energy. ESHA 2nd Policy Forum 2013, Munich. Available online: http://www.store-project.eu/uploads/docs/presentation-esha-2nd-policy-forum-thomas-maidonis.pdf (accessed on 30 June 2015).
- Schoenung, S. Energy Storage Systems Cost Update, a Study for the DOE Energy Storage Systems Program. Available online: http://prod.sandia.gov/techlib/access-control.cgi/2011/112730.pdf (accessed on 19 October 2015).
- Bloomberg New Energy Finance. Wind and Solar Boost Cost-Competitiveness versus Fossil Fuels. 2015. Available online: http://www.bbhub.io/bnef/sites/4/2015/10/BNEF_PR_20151006_Global-Cost-of-Energy.pdf (accessed on 30 July 2015).
- Energy Information Administration. Annual Energy Outlook with Projections to 2040; U.S. Energy Information Administration: Washington, DC, USA, 2015. Available online: http://www.eia.gov/forecasts/aeo/pdf/0383(2015).pdf (accessed on 30 July 2015).
- Fraunhofer Institute for Solar Energy Systems. Levelized Cost of Electricity—Renewable Energy Technologies. Ed November 2013; Fraunhofer Institute for Solar Energy Systems ISE: Freiburg, Germany, 2013; Available online: https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/Fraunhofer-ISE_LCOE_Renewable_Energy_technologies.pdf (accessed on 30 July 2015).
- European Commission. Subsidies and Costs of EU Energy; Report No. DESNL14583; European Commission, Directorate-General for Energy: Brussels, Belgium, 2014; p. 52. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/ECOFYS%202014%20Subsidies%20and%20costs%20of%20EU%20energy_11_Nov.pdf (accessed on 30 July 2015).
- European Commission. New Research Reveals the Real Costs of Electricity in Europe; European Commission, Research Directorate-General: Brussels, Belgium, 2001; Available online: http://www.ier.uni-stuttgart.de/forschung/projektwebsites/newext/externen.pdf (accessed on 30 July 2015).
- ExternE-Pol. Externalities of Energy: Extension of Accounting Framework and Policy Applications. Available online: http://www.externe.info/externe_2006/expoltec.pdf (accessed on 30 June 2015).
- UBA. Best-Practice-Kostensätze für Luftschadstoffe, Verkehr, Strom- und Wärmeerzeugung; 44pp REPORT No. Anhang B der Methodenkonvention 2.0 zur Schätzung von Umweltkosten; Umweltbundesamt: Dessau-Roßlau, Germany, 2012; Available online: https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/uba_methodenkonvention_2.0_-_anhang_b_0.pdf (accessed on 30 July 2015).
- Meyer, B. Externe Kosten der Atomenergie und Reformvorschläge zum Atomhaftungsrecht. Available online: http://www.foes.de/pdf/2012-09-Externe_Kosten_Atomenergie.pdf (accessed on 30 July 2015).
- Cota, D. Energias Renováveis nos Açores—Passado, Presente e Futuro. Available online: http://www.portal-energia.com (accessed on 30 July 2015).
- Eletricidade dos Açores. Procura e Oferta de Energia Eléctrica, Dezembro de 2014; EDA: Ponta Delgada, Portugal, 2014; Available online: http://www.eda.pt/Mediateca/Publicacoes/Producao/ProducaoConsumo/POEE%20dezembro_2014.pdf (accessed on 30 July 2015).
- Eletricidade dos Açores. Caracterização das Redes de Transporte e Distribuição de Energia Elétrica da Região Autónoma dos Açores; EDA: Ponta Delgada, Portugal, 2014; Available online: http://www.eda.pt/EDA/DocsDistribuicao/CARE%202014.pdf (accessed on 30 June 2014).
- Eletricidade dos Açores. Maximização de Produção de Energia Eléctrica com Origem em Fontes Endógenas da Ilha Terceira—Impacto No Sistema Electroprodutor, Ponta Delgada; EDA: São Miguel, Portugal, 2012; unpublished work. [Google Scholar]
- Eletricidade de Portugal. Aproveitamentos Hidroeléctricos Reversíveis nas Ilhas de S, Miguel e Terceira, EDP, Ponta Delgada; EDP: Lisbon, Portugal, 2008; unpublished work. [Google Scholar]
- Yang, C.J.; Jackson, R. Opportunities and barriers to pumped-hydro energy storage in the United States. Renew. Sustain. Energy Rev. 2011, 15, 839–844. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. Electrical Energy Storage; IEC: Geneva, Switzerland, 2011; Available online: http://www.iec.ch/whitepaper/pdf/iecWP-energystorage-LR-en.pdf (accessed on 30 June 2014).
- Rodrigues, A.; Silva, V.; Barcelos, E.; Silva, C.; Dentinho, T. Geographical information systems and cost benefit analysis-based approach for wind power feasibility: A case study of Terceira Island. J. Renew. Sustain. Energy 2015, 7, 053115. [Google Scholar] [CrossRef]
- LAZARD. Lazard’s Levelized Cost of Energy Analysis. Available online: https://www.lazard.com/media/438038/levelized-cost-of-energy-v100.pdf (accessed on 30 November 2016).
- OECD/IEA. Renewable Energy Essentials: Geothermal. Organisation for Economic Co-operation and Development and International Energy Agency. Available online: https://www.iea.org/publications/freepublications/publication/Geothermal_Essentials.pdf (accessed on 30 July 2015).
Battery Types | Description | Advantages | Disadvantages |
---|---|---|---|
Lead-acid | Rechargeable; For starter motors, solar, wind and hydropower (“Deep Cycle”). | Great durability; Relatively low cost. Resistant to temperature variations. | Very heavy; High load time. |
Lithium | Used in devices which require long lifetimes. Frequency adjustment; Voltage regulation; Integration with RES. | Auto low discharge factor. Low recharge time; High energy density; Ability to tolerate more discharge cycles; High energy efficiency. | High costs; Negative effects of overload on the unloading; Potential overheating. |
Sodium Sulfide | Network stabilization; Integration of RES. | High energy density; Long life cycle; Quick response; High efficiency in loading-unloading cycles; Tolerates high numbers of charge/discharge cycles. | May require heating; Potential security issues with the sodium. |
Technology | PHS | NaS Batteries | Li-ion Batteries |
---|---|---|---|
Capacity | 5 MW–2 GW b 100–5000 MW e | 50 kW–8 MW e | 0–100 kW e |
Response time | 1–24 h+ e | seconds–hours e | minutes–hours e |
Cycles | 25,000 d | 3000 d | 4000 d |
Suitable storage duration | 4–100 h b Hours–months e | Seconds–hours d,e | minutes–hours d inutes–days e |
Self Discharge per day | very small e | ~20% e | 0.1–0.3% e |
Efficiency (%) | 65–80 a 55–80 b 85 d | 75–90 a 75 d | 85–98 a 85 d |
Lifetime (years) | 30 a 50 or more b 30–50 c 40–60 e | 5–15 a 10–15 c | 5–15 a |
Development stage | mature b | developed e | developed e |
Energy density | 0.5–1.5 Wh/L e | 150–240 Wh/kg a | 75–200 Wh/kg a |
Power density | 0.5–1.5 W/L e | 150–230 W/Kg a | 150–315 W/Kg a |
Power Station | Installed Power (MW) |
---|---|
Thermal PowerStation (fuel-oil + diesel) | 61.116 |
Hydropower station | 1.432 |
Wind Energy | 12.6 |
Total | 75.148 |
Static Waterfall (m) | Pump | Turbine | Volume for Pumping During 6 h (m3) | Volume for Pumping During 7 h (m3) | Volume for Pumping During 8 h (m3) | ||
---|---|---|---|---|---|---|---|
Flow Rate (m3/s) | Requested Main Power (MW) | Flow Rate (m3/s) | Power Supplied to Network (MW) | ||||
200 | 1 | 2.4 | 1 | 1.6 | 21,600 | 25,200 | 28,800 |
2 | 4.8 | 2 | 3.2 | 43,200 | 50,400 | 57,600 | |
3 | 7.3 | 3 | 4.8 | 64,800 | 75,600 | 86,400 | |
4 | 9.7 | 4 | 6.3 | 86,400 | 100,800 | 115,200 | |
300 | 1 | 3.6 | 1 | 2.4 | 21,600 | 25,200 | 28,800 |
2 | 7.3 | 2 | 4.8 | 43,200 | 50,400 | 57,600 | |
3 | 10.9 | 3 | 7.1 | 64,800 | 75,600 | 86,400 | |
4 | 14.5 | 4 | 9.5 | 86,400 | 100,800 | 115,200 | |
400 | 1 | 4.8 | 1 | 3.2 | 21,600 | 25,200 | 28,800 |
2 | 9.7 | 2 | 6.3 | 43,200 | 50,400 | 57,600 | |
3 | 14.5 | 3 | 9.5 | 64,800 | 75,600 | 86,400 | |
4 | 19.4 | 4 | 12.7 | 86,400 | 100,800 | 115,200 |
Static Waterfall (m) | Pump | Turbine | Volume Required to Pump during 7 h (m3) | Pipe Diameter (m) | ||
---|---|---|---|---|---|---|
Flow Rate (m3/s) | Requested Main Power (MW) | Flow Rate (m3/s) | Power Supplied to Network (MW) | |||
175 | 1 | 2.1 | 1 | 1.4 | 25,200 | 0.8 |
2 | 4.2 | 2 | 2.8 | 50,400 | 1 | |
3 | 6.4 | 3 | 4.2 | 75,600 | 1.1 | |
4 | 8.5 | 4 | 5.5 | 100,800 | 1.3 |
Static Waterfall (m) | Pump | Turbine | Volume Required to Pump during 7 h (m3) | Pipe Diameter (m) | ||
---|---|---|---|---|---|---|
Flow Rate (m3/s) | Requested Main Power (MW) | Flow Rate (m3/s) | Power Supplied to Network (MW) | |||
190 | 1 | 2.3 | 1 | 1.5 | 25,200 | 0.8 |
2 | 4.6 | 2 | 3 | 50,400 | 1 | |
3 | 6.9 | 3 | 4.5 | 75,600 | 1.2 | |
1 | 2.3 | 1 | 1.5 | 25,200 | 0.8 |
Static Waterfall (m) | Pump | Turbine | Volume Required to Pump during 7 h (m3) | Pipe Diameter (m) | ||
---|---|---|---|---|---|---|
Flow Rate (m3/s) | Requested Main Power (MW) | Flow Rate (m3/s) | Power Supplied to Network (MW) | |||
340 | 1 | 4.1 | 1 | 2.7 | 25,200 | 0.7 |
2 | 8.2 | 2 | 5.4 | 50,400 | 0.9 | |
3 | 12.4 | 3 | 8.1 | 75,600 | 1 | |
4 | 16.5 | 4 | 10.8 | 100,800 | 1.1 |
Technology | Fixed Costs (€/kW·Year) | Variable Costs (€/kWh) |
---|---|---|
PHS | 3.8 | 0.38 |
Batteries | 0.34 | 0.51 |
Features | Cabrito Lagoon | Cinco Ribeiras Lagoon | Morião-Nasce Água Lagoon |
---|---|---|---|
Lagoons to build | 1 | 1 | 2 |
Upstream/downstream elevation (m) | 575/400 | 710/520 | 600/260 |
Static waterfall (m) | 175 | 190 | 340 |
Flow (m3/s) | 3 | 3 | 3 |
Mobilized volume—pump 7 h (m3) | 75.6 | 75.6 | 75.6 |
Pumped power (MW) | 6.4 | 6.9 | 12.4 |
Dispatched power (MW) | 4.2 | 4.5 | 8.1 |
Pipe extension (km)/Diameter (m) | 1.2/1.1 | 1.6/1.2 | 1.3/1.0 |
Weak and Strong points | Reduced elevation difference | Proximity of the existing grid |
Equipment Flow Rate (m3/s) | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Power (MW) | 2.7 | 5.4 | 8.1 | 10.8 | |
Volume required for pumping during 7:0 (m3) | 25,200 | 50,400 | 75,600 | 100,800 | |
Total volume (m3) | 20,319 | 25,674 | 32,696 | 38,315 | |
Refurbishment of roads | Construction (M€) | 0.1 | |||
Equipment (M€) | 0.01 | ||||
Sub-total (M€) | 0.11 | ||||
Cost of upper reservoir | Construction (M€) | 1.93 | 2.41 | 3.04 | 3.54 |
Equipment (M€) | 0.1 | 0.1 | 0.09 | 0.08 | |
Sub-total (M€) | 2.03 | 2.51 | 3.13 | 3.62 | |
Pipeline/hydraulic circuit cost | Sub-total (M€) | 2.2 | 3.91 | 5.9 | 7.59 |
Hydroelectric power plant costs | Construction (M€) | 0.2 | 0.38 | 0.51 | 0.72 |
Equipment (M€) | 0.85 | 1.48 | 2.24 | 2.85 | |
Sub-total (M€) | 1.05 | 1.86 | 2.75 | 0.57 | |
Electrical connection, land, expropriations and accesses | Sub-total (M€) | 0.51 | 0.87 | 1.2 | 1.5 |
Environmental mitigation | Sub-total (M€) | 0.09 | 0.21 | 0.27 | 0.4 |
Studies, projects and monitoring | Sub-total (M€) | 0.45 | 0.78 | 1.08 | 1.39 |
Total investment costs (M€) | 6.44 | 10.25 | 14.44 | 18.18 | |
Annual O & M costs (M€) | 0.038 | 0.065 | 0.092 | 0.119 |
Power (MW) | 2.7 | 5.4 | 8.1 | 10.8 | |
---|---|---|---|---|---|
Refurbishment of roads | Construction (M€) | 0.1 | |||
Equipment (M€) | 0.01 | ||||
Sub-total (M€) | 0.11 | ||||
Cost varying with installed power (batteries including transport + auxiliary equipment + infrastructures) | Sub-total (M€) | 4.05 | 8.1 | 12.15 | 16.2 |
Electrical connection, land, expropriation and accesses | Sub-total (M€) | 0.51 | 0.87 | 1.2 | 1.5 |
Environmental mitigation | Sub-total (M€) | 0.09 | 0.21 | 0.27 | 0.4 |
Studies, projects and monitoring | Sub-total (M€) | 0.45 | 0.78 | 1.08 | 1.39 |
Total investment costs (M€) | 5.21 | 10.07 | 14.81 | 19.6 | |
Annual operation and maintenance costs (M€) | 0.095 | 0.189 | 0.284 | 0.378 |
PHS a | Batteries | |
---|---|---|
Initial investment costs (M€) | 14.44 | 14.81 |
Replacement costs (M€) b | 0.00 | 12.15 |
Variable costs (O & M) (M€/year) | 0.055 | 0.041 |
Fixed costs (O & M) (M€/year) | 0.0000044 | 0.243 |
Total O & M costs (M€/year) | 0.092 | 0.2835 |
Power Capacity (MW) | Dispatched Electricity (MWh/Year) | Present Costs (M€) | COEs (€/kWh) | PCB/P Ratio | COEB/P Ratio | |||
---|---|---|---|---|---|---|---|---|
PHS | Batteries | PHS | Batteries | PHS | Batteries | |||
8.1 | 7039.21 | 9205.12 | 15.564 | 28.273 | 0.0538 | 0.1680 | 1.82 | 3.12 |
Power Capacity (MW) | Dispatched Electricity (MWh/Year) | Present Costs (M€) | COE (€/kWh) | PCB/P Ratio | COEB/P Ratio | |||
---|---|---|---|---|---|---|---|---|
PHS a | Batteries | PHS a | Batteries | PHS a | Batteries | |||
2.7 | 4484.03 | 5026.05 | 6.904 | 9.704 | 0.0370 | 0.1159 | 1.41 | 3.13 |
5.4 | 8968.05 | 10,052.10 | 11.044 | 19.046 | 0.0300 | 0.1150 | 1.72 | 3.84 |
8.1 | 13,452.08 | 15,078.15 | 15.564 | 28.273 | 0.0282 | 0.1146 | 1.82 | 4.07 |
10.8 | 17,936.10 | 20,104.20 | 19.633 | 37.551 | 0.0268 | 0.1144 | 1.91 | 4.27 |
Power Capacity (MW) | 25% Reduction of Stored Energy | 50% Reduction of Stored Energy | ||||||
---|---|---|---|---|---|---|---|---|
Dispatched Electricity (MWh/year) | COE (€/kWh) | Dispatched Electricity (MWh/year) | COE (€/kWh) | |||||
PHS a | Batteries | PHS a | Batteries | PHS a | Batteries | PHS a | Batteries | |
2.7 | 3363.02 | 3372.54 | 0.0494 | 0.1263 | 2242.01 | 2248.36 | 0.0741 | 0.1666 |
5.4 | 6726.04 | 6745.07 | 0.0399 | 0.1251 | 4484.03 | 4496.71 | 0.0599 | 0.1648 |
8.1 | 10,089.06 | 10,117.61 | 0.0376 | 0.1246 | 6726.04 | 6745.07 | 0.0563 | 0.1640 |
10.8 | 13,452.08 | 13,490.14 | 0.0357 | 0.1226 | 8968.05 | 8993.43 | 0.0535 | 0.1637 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, A.; Machado, D.; Dentinho, T. Electrical Energy Storage Systems Feasibility; the Case of Terceira Island. Sustainability 2017, 9, 1276. https://doi.org/10.3390/su9071276
Rodrigues A, Machado D, Dentinho T. Electrical Energy Storage Systems Feasibility; the Case of Terceira Island. Sustainability. 2017; 9(7):1276. https://doi.org/10.3390/su9071276
Chicago/Turabian StyleRodrigues, Ana, Denise Machado, and Tomaz Dentinho. 2017. "Electrical Energy Storage Systems Feasibility; the Case of Terceira Island" Sustainability 9, no. 7: 1276. https://doi.org/10.3390/su9071276
APA StyleRodrigues, A., Machado, D., & Dentinho, T. (2017). Electrical Energy Storage Systems Feasibility; the Case of Terceira Island. Sustainability, 9(7), 1276. https://doi.org/10.3390/su9071276