A Country-Specific Water Consumption Inventory Considering International Trade in Asian Countries Using a Multi-Regional Input-Output Table
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Concept, Definition of Elementary Flows
2.2. Input-Output Table
2.3. Water Consumption Calculations
2.4. Water Consumption Data Sources
3. Results
3.1. Estimated Freshwater Consumption in Each Industrial Sector and the Type of Water
3.2. Water Consumption Intensity
3.3. Amount of Water Consumption Considering International Trade
3.4. Sensitivity Analysis Focusing on Water Consumption of Nine Countries
- Scenario 1: SR is from 0.5 to 1.5, and is applied to only one industry of all countries (Table 1).
- Scenario 2: SR is from 0.5 to 1.5, and is applied to only primary industry of one country.
- Type 1: Indonesia (AI), Malaysia (AM), China (AC), and USA (AU)
- Type 2: The Philippines (AP) and Thailand (AT)
- Type 3: Singapore (AS), Korea (AK), and Japan (AJ)
4. Discussion
4.1. Comparison with Previous Study and the Japanese Characteristics Identified in This Study
4.2. Comparison between EXIOBASE Data and This Study
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ministry of Economy, Trade and Industry (METI). White Paper on International Economy and Trade in Japan. Available online: http://www.meti.go.jp/report/tsuhaku2008/index.html (accessed on 17 September 2016). (In Japanese)
- Ministry of Land, Infrastructure, Transport and Tourism (MLIT). Water Resources in Japan. Available online: http://www.mlit.go.jp/tochimizushigen/mizsei/hakusyo/index5.html (accessed on 17 September 2016).
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the environmental impacts of freshwater consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef] [PubMed]
- Motoshita, M.; Itsubo, N.; Inaba, A. Development of impact factors on damage to health by infectious diseases caused by domestic water scarcity. Int. J. Life Cycle Assess. 2010, 16, 65–73. [Google Scholar] [CrossRef]
- Boulay, A.-M.; Bulle, C.; Bayart, J.-B.; Deschênes, L.; Margni, M. Regional characterization of freshwater use in LCA: Modeling direct impacts on human health. Environ. Sci. Technol. 2011, 45, 8948–8957. [Google Scholar] [CrossRef] [PubMed]
- Motoshita, M.; Ono, Y.; Pfister, S.; Boulay, A.M.; Berger, M.; Nansai, K.; Tahara, K.; Itsubo, N.; Inaba, A. Consistent characterization factors at midpoint and endpoint relevant to agricultural water scarcity arising from freshwater consumption. Int. J. Life Cycle Assess. 2014. [Google Scholar] [CrossRef]
- Verones, F.; Hanafiah, M.M.; Pfister, S.; Huijbregts, M.A.J.; Pelletier, G.J.; Koehler, A. Characterization factors for thermal pollution in freshwater aquatic environments. Environ. Sci. Technol. 2010, 44, 9364–9369. [Google Scholar] [CrossRef] [PubMed]
- Van Zelm, R.; Schipper, A.M.; Rombouts, M.; Snepvangers, J.; Huijbregts, M.A.J. Implementing groundwater extraction in life cycle impact assessment: Characterization factors based on plant species richness for the Netherlands. Environ. Sci. Technol. 2011, 45, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard. Available online: http://waterfootprint.org/media/downloads/TheWaterFootprintAssessmentManual_2.pdf (accessed on 17 September 2016).
- International Organization for Standardization (ISO). ISO 14046:2014 Environmental Management—Water footprint—Principles, Requirements and Guidelines. Available online: http://www.iso.org/iso/catalogue_detail?csnumber=43263 (accessed on 17 September 2016).
- Boulay, A.M.; Hoekstra, A.Y.; Vionnet, S. Complementarities of water-focused life cycle assessment and water footprint assessment. Environ. Sci. Technol. 2013, 47, 11926–11927. [Google Scholar] [CrossRef] [PubMed]
- Manzardo, A.; Mazzi, A.; Loss, A.; Butler, M.; Williamson, A.; Scipioni, A. Lessons learned from the application of different water footprint approaches to compare different food packaging alternatives. J. Clean. Prod. 2015, 112, 4657–4666. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Oyasato, N. An Estimation of Embodied Intensity of Water Consumption in Japan based on Input-Output Analysis Method. J. Life Cycle Assess. Jpn. 2008, 4, 359–366. [Google Scholar] [CrossRef]
- Ecoinvent. Ecoinvent Version 3. Available online: http://www.ecoinvent.org/ (accessed on 17 September 2016).
- PE International. LCA Software GaBi. Available online: http://www.thinkstep.co.jp/gabi (accessed on 17 September 2016). (In Japanese).
- Quantis. Water Database. Available online: http://www.quantis-intl.com/microsites/waterdatabase.php (accessed on 17 September 2016).
- Water Footprint Network. Water Footprint Statistics (WaterStat). Available online: http://www.waterfootprint.org/?page=files/WaterStat (accessed on 17 September 2016).
- Lave, L.B.; Elisa, C.-F.; Chris, T.H.; Francis, C.M. Using input-output analysis to estimate economy-wide discharges. Environ. Sci. Technol. 1995, 29, 420–426. [Google Scholar] [CrossRef]
- Suh, S.; Huppes, G. Missing Inventory Estimation Tool Using Extended Input-Output Analysis. Int. J. Life Cycle Assess. 2002, 7, 134–140. [Google Scholar] [CrossRef]
- Nansai, K.; Moriguchi, Y.; Tohno, S. Compilation and Application of Japanese Inventories for Energy Consumption and Air Pollutant Emissions Using Input-Output Tables. Environ. Sci. Technol. 2003, 37, 2005–2015. [Google Scholar] [CrossRef] [PubMed]
- Nansai, K.; Kondo, Y.; Kagawa, S.; Suh, S.; Nakajima, K.; Inaba, R.; Tohno, S. Estimates of Embodied Global Energy and Air-Emission Intensities of Japanese Products for Building a Japanese Input-Output Life Cycle Assessment Database with a Global System Boundary. Environ. Sci. Technol. 2012, 46, 9146–9154. [Google Scholar] [CrossRef] [PubMed]
- Tukker, A.; Huppes, G.; van Oers, L.; Heijung, R. Environmentally Extended Input-Output Tables and Models for Europe, European Commission, Joint Research Centre, Institute for Prospective Technological Studies. Available online: http://ftp.jrc.es/EURdoc/eur22194en.pdf (accessed on 17 September 2016).
- Blackhurst, M.; Hendrickson, C.; Vidal, J.S. Direct and indirect water withdrawals for U.S. industrial sectors. Environ. Sci. Technol. 2010, 44, 2126–2130. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.D.; Lee, S.H.; Ono, Y.; Lee, S.H. Development of Water Footprint Inventory Using Input-Output Analysis. J. Korea Water Resour. Assoc. 2013, 46, 401–412. [Google Scholar] [CrossRef]
- Ono, Y.; Motoshita, M.; Itsubo, N. Development of water footprint inventory database on Japanese goods and services distinguishing the types of water resources and the forms of water uses based on input-output analysis. Int. J. Life Cycle Assess. 2015, 20, 1456–1467. [Google Scholar] [CrossRef]
- Lenzen, M. Understanding virtual water flows: A multi-region input-output case study of Victoria. Water Resour. Res. 2009, 45, W09416. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, H.; Yang, Z.; Chen, B.; Qin, Y. Applying the Input-Output Method to Account for Water Footprint and Virtual Water Trade in the Haihe River Basin in China. Environ. Sci. Technol. 2010, 44, 9150–9156. [Google Scholar] [CrossRef] [PubMed]
- Exiobase. The Global Resource Footprint of Nations. Available online: http://www.exiobase.eu/ (accessed on 17 September 2016).
- Water Footprint Network. The Water Footprint Assessment Manual: Setting the Global Standard. Available online: http://www.waterfootprint.org/?page=files/home (accessed on 17 September 2016).
- United Nations Statistics Division. System of Environmental-Economic Accounting for Water (SEEA-W). Available online: http://unstats.un.org/unsd/envaccounting/seeaw (accessed on 17 September 2016).
- Institute of Developing Economies, Japan External Trade Organization (IDE-JETRO). Asain International Input-Output Table 2005; Institute of Developing Economies, Japan External Trade Organization (IDE-JETRO): Tokyo, Japan, 2013. [Google Scholar]
- Leontief, W. Environmental Repurcussions and Economic Structure—Input-Output Approach. Rev. Econ. Stat. 1970, 52, 262–271. [Google Scholar] [CrossRef]
- Leontief, W.; Strout, A. Multiregional Input-Output Analysis; Macmillan: London, UK, 1963. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products. 2010. Value of Water Research Report Series No. 47. Available online: http://www.waterfootprint.org/Reports/Report47-WaterFootprintCrops-Vol1.pdf (accessed on 17 September 2016).
- Food and Agriculture Organization of the United Nations. Land & Water. Available online: http://www.fao.org/land-water/databases-and-software/climwat-for-cropwat/en/ (accessed on 17 September 2016).
- Food and Agriculture Organization of the United Nations. CropWat. Available online: http://www.fao.org/nr/water/infores_databases_cropwat.html (accessed on 17 September 2016).
- Food and Agriculture Organization of the United Nations. FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 17 September 2016).
- Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment (FRA) 2005—Global Tables Designated Functions of Forest—Primary Function 2005. Available online: http://www.fao.org/forestry/32035/en (accessed on 17 September 2016).
- United States Department of Agriculture (USGS). 2008 Farm and Ranch Irrigation Survey. Available online: http://www.agcensus.usda.gov/Publications/2007/Online_Highlights/Farm_and_Ranch_Irrigation_Survey (accessed on 17 September 2016).
- Food and Agriculture Organization of the United Nations. AQUASTAT. Available online: http://www.fao.org/nr/water/aquastat/data/query/results.html (accessed on 17 September 2016).
- Tukker, A.; Bulavskaya, T.; Giljum, S.; de Koning, A.; Lutter, S.; Simas, M.; Stadler, K.; Wood, R. The Global Resource Footprint of Nations. Carbon, Water, Land and Materials Embodied in Trade and Final Consumption Calculated with EXIOBASE 2.1. Available online: http://www.truthstudio.com/content/CREEA_Global_Resource_Footprint_of_Nations.pdf (accessed on 17 September 2016).
Total | Difference | AI | AM | AP | AS | AT | AC | AK | AJ | AU | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.5-Pri | 9.6 × 1012 | 3.0 × 1012 | 149% | 147% | 148% | 145% | 149% | 147% | 145% | 146% | 143% | 146% |
1.5-Sec | 6.6 × 1012 | 7.1 × 1010 | 100% | 101% | 101% | 102% | 100% | 101% | 101% | 101% | 102% | 101% |
1.5-Tar | 6.8 × 1012 | 2.2 × 1011 | 101% | 102% | 101% | 104% | 101% | 102% | 104% | 104% | 105% | 103% |
1.4-Pri | 9.0 × 1012 | 2.4 × 1012 | 139% | 138% | 139% | 136% | 139% | 138% | 136% | 136% | 135% | 137% |
1.4-Sec | 6.6 × 1012 | 5.7 × 1010 | 100% | 100% | 100% | 101% | 100% | 101% | 101% | 100% | 101% | 101% |
1.4-Tar | 6.7 × 1012 | 1.7 × 1011 | 101% | 102% | 101% | 103% | 101% | 102% | 103% | 103% | 104% | 103% |
1.3-Pri | 8.4 × 1012 | 1.8 × 1012 | 129% | 128% | 129% | 127% | 129% | 128% | 127% | 127% | 126% | 127% |
1.3-Sec | 6.6 × 1012 | 4.3 × 1010 | 100% | 100% | 100% | 101% | 100% | 101% | 101% | 100% | 101% | 101% |
1.3-Tar | 6.7 × 1012 | 1.3 × 1011 | 101% | 101% | 101% | 102% | 101% | 101% | 102% | 102% | 103% | 102% |
1.2-Pri | 7.8 × 1012 | 1.2 × 1012 | 119% | 119% | 119% | 118% | 119% | 119% | 118% | 118% | 117% | 118% |
1.2-Sec | 6.6 × 1012 | 2.8 × 1010 | 100% | 100% | 100% | 101% | 100% | 100% | 100% | 100% | 101% | 100% |
1.2-Tar | 6.7 × 1012 | 8.6 × 1010 | 100% | 101% | 100% | 102% | 100% | 101% | 102% | 102% | 102% | 101% |
1.1-Pri | 7.2 × 1012 | 6.0 × 1011 | 110% | 109% | 110% | 109% | 110% | 109% | 109% | 109% | 109% | 109% |
1.1-Sec | 6.6 × 1012 | 1.4 × 1010 | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
1.1-Tar | 6.6 × 1012 | 4.3 × 1010 | 100% | 100% | 100% | 101% | 100% | 100% | 101% | 101% | 101% | 101% |
BASE | 6.6 × 1012 | 0 | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
0.9-Pri | 6.0 × 1012 | −6.0 × 1011 | 90% | 91% | 90% | 91% | 90% | 91% | 91% | 91% | 91% | 91% |
0.9-Sec | 6.6 × 1012 | −1.4 × 1010 | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
0.9-Tar | 6.5 × 1012 | −4.3 × 1010 | 100% | 100% | 100% | 99% | 100% | 100% | 99% | 99% | 99% | 99% |
0.8-Pri | 5.4 × 1012 | −1.2 × 1012 | 81% | 81% | 81% | 82% | 81% | 81% | 82% | 82% | 83% | 82% |
0.8-Sec | 6.5 × 1012 | −2.8 × 1010 | 100% | 100% | 100% | 99% | 100% | 100% | 100% | 100% | 99% | 100% |
0.8-Tar | 6.5 × 1012 | −8.6 × 1010 | 100% | 99% | 100% | 98% | 100% | 99% | 98% | 98% | 98% | 99% |
0.7-Pri | 4.8 × 1012 | −1.8 × 1012 | 71% | 72% | 71% | 73% | 71% | 72% | 73% | 73% | 74% | 73% |
0.7-Sec | 6.5 × 1012 | −4.3 × 1010 | 100% | 100% | 100% | 99% | 100% | 99% | 99% | 100% | 99% | 99% |
0.7-Tar | 6.4 × 1012 | −1.3 × 1011 | 99% | 99% | 99% | 98% | 99% | 99% | 98% | 98% | 97% | 98% |
0.6-Pri | 4.2 × 1012 | −2.4 × 1012 | 61% | 62% | 61% | 64% | 61% | 62% | 64% | 64% | 65% | 63% |
0.6-Sec | 6.5 × 1012 | −5.7 × 1010 | 100% | 100% | 100% | 99% | 100% | 99% | 99% | 100% | 99% | 99% |
0.6-Tar | 6.4 × 1012 | −1.7 × 1011 | 99% | 98% | 99% | 97% | 99% | 98% | 97% | 97% | 96% | 97% |
0.5-Pri | 3.6 × 1012 | −3.0 × 1012 | 51% | 53% | 52% | 55% | 51% | 53% | 55% | 54% | 57% | 54% |
0.5-Sec | 6.5 × 1012 | −7.1 × 1010 | 100% | 99% | 99% | 98% | 100% | 99% | 99% | 99% | 98% | 99% |
0.5-Tar | 6.4 × 1012 | −2.2 × 1011 | 99% | 98% | 99% | 96% | 99% | 98% | 96% | 96% | 95% | 97% |
Total | Difference | AI | AM | AP | AS | AT | AC | AK | AJ | AU | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.5-Pri-AU | 7.8 × 1012 | 1.2 × 1012 | 100% | 101% | 101% | 104% | 101% | 101% | 110% | 116% | 140% | 118% |
1.4-Pri-AU | 7.5 × 1012 | 9.5 × 1011 | 100% | 101% | 101% | 103% | 101% | 101% | 108% | 113% | 132% | 114% |
1.3-Pri-AU | 7.3 × 1012 | 7.1 × 1011 | 100% | 101% | 100% | 102% | 101% | 101% | 106% | 110% | 124% | 111% |
1.2-Pri-AU | 7.1 × 1012 | 4.8 × 1011 | 100% | 100% | 100% | 102% | 100% | 100% | 104% | 106% | 116% | 107% |
1.1-Pri-AU | 6.8 × 1012 | 2.4 × 1011 | 100% | 100% | 100% | 101% | 100% | 100% | 102% | 103% | 108% | 104% |
BASE | 6.6 × 1012 | 0 | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
0.9-Pri-AU | 6.3 × 1012 | −2.4 × 1011 | 100% | 100% | 100% | 99% | 100% | 100% | 98% | 97% | 92% | 96% |
0.8-Pri-AU | 6.1 × 1012 | −4.8 × 1011 | 100% | 100% | 100% | 98% | 100% | 100% | 96% | 94% | 84% | 93% |
0.7-Pri-AU | 5.9 × 1012 | −7.1 × 1011 | 100% | 99% | 100% | 98% | 99% | 99% | 94% | 90% | 76% | 89% |
0.6-Pri-AU | 5.6 × 1012 | −9.5 × 1011 | 100% | 99% | 99% | 97% | 99% | 99% | 92% | 87% | 68% | 86% |
0.5-Pri-AU | 5.4 × 1012 | −1.2 × 1011 | 100% | 99% | 99% | 96% | 99% | 99% | 90% | 84% | 60% | 82% |
Sector Name | Ratio of This Study to Previous One | Rate of Indonesia | Rate of Malaysia | Rate of The Philippines | Rate of Singapore | Rate of Thailand | Rate of China | Rate of Korea | Rate of Japan | Rate of USA |
---|---|---|---|---|---|---|---|---|---|---|
Pig farming | 2.1 | 2% | 5% | 23% | 0% | 1% | 14% | 0% | 7% | 47% |
Beef cattle | 1.5 | 1% | 4% | 13% | 0% | 1% | 11% | 0% | 32% | 37% |
Sea fisheries | 2.1 | 9% | 8% | 2% | 0% | 4% | 22% | 3% | 26% | 26% |
Marine aquaculture | 2.4 | 6% | 5% | 5% | 0% | 5% | 16% | 15% | 12% | 36% |
Noodles | 4.2 | 1% | 4% | 3% | 0% | 2% | 4% | 0% | 10% | 76% |
Flour and other grain milled products | 22.4 | 0% | 0% | 0% | 0% | 0% | 2% | 0% | 0% | 98% |
Starch, dextrose, syrup and isomerized sugar | 25.6 | 0% | 0% | 0% | 0% | 0% | 2% | 0% | 1% | 97% |
Vegetable oils and meal | 3.4 | 2% | 6% | 26% | 0% | 1% | 15% | 0% | 1% | 50% |
Beer | 3.1 | 7% | 2% | 1% | 0% | 1% | 7% | 0% | 20% | 63% |
Fiber yarns | 4.8 | 19% | 3% | 2% | 0% | 2% | 23% | 1% | 10% | 41% |
Cotton and staple fiber fabrics (inc. fabrics of synthetic spun fibers) | 7.0 | 8% | 6% | 1% | 0% | 3% | 44% | 0% | 8% | 30% |
Woollen fabrics, hemp fabrics, and other fabrics | 4.1 | 11% | 6% | 1% | 0% | 3% | 39% | 1% | 19% | 20% |
Knitting fabrics | 4.4 | 11% | 6% | 1% | 0% | 3% | 49% | 1% | 12% | 18% |
Tires and inner tubes | 14.7 | 62% | 19% | 0% | 0% | 9% | 2% | 0% | 5% | 3% |
Rubber footwear | 9.1 | 49% | 15% | 0% | 0% | 7% | 7% | 1% | 14% | 7% |
Tatami (straw matting) and straw products | 3.7 | 1% | 1% | 0% | 0% | 0% | 69% | 1% | 25% | 3% |
Number of People (Person) | Country (Million m3) | One Person (m3) | ||
---|---|---|---|---|
This study | Japan | 127,770,750 | 42,616 | 334 |
USA | 301,231,207 | 239,894 | 796 | |
China | 1,317,885,000 | 229,880 | 174 | |
CREEA | Japan | 127,770,750 | 36,398 | 285 |
USA | 301,231,207 | 200,052 | 664 | |
China | 1,317,885,000 | 239,967 | 182 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ono, Y.; Kim, Y.D.; Itsubo, N. A Country-Specific Water Consumption Inventory Considering International Trade in Asian Countries Using a Multi-Regional Input-Output Table. Sustainability 2017, 9, 1351. https://doi.org/10.3390/su9081351
Ono Y, Kim YD, Itsubo N. A Country-Specific Water Consumption Inventory Considering International Trade in Asian Countries Using a Multi-Regional Input-Output Table. Sustainability. 2017; 9(8):1351. https://doi.org/10.3390/su9081351
Chicago/Turabian StyleOno, Yuya, Young Deuk Kim, and Norihiro Itsubo. 2017. "A Country-Specific Water Consumption Inventory Considering International Trade in Asian Countries Using a Multi-Regional Input-Output Table" Sustainability 9, no. 8: 1351. https://doi.org/10.3390/su9081351
APA StyleOno, Y., Kim, Y. D., & Itsubo, N. (2017). A Country-Specific Water Consumption Inventory Considering International Trade in Asian Countries Using a Multi-Regional Input-Output Table. Sustainability, 9(8), 1351. https://doi.org/10.3390/su9081351