Impact of Deforestation on Agro-Environmental Variables in Cropland, North Korea
Abstract
:1. Introduction
2. Data and Methods
2.1. Deforestation in North Korea
2.2. Agro-Environmental Variables in Croplands
2.3. Model Simulation
2.4. Data Preparation
2.5. Validation
3. Results
3.1. Cropland Expansion and Deforestation in North Korea
3.2. Validation of the GEPIC Result Using Previous Studies and Land Assimilation Data
3.3. Agro-Environmental Variables over the Past 30 Years
3.4. Changes in a Agro-Environmental Variables Due to Deforestation
3.5. Implications for Crop Growth, Cropland Stability, and Food Security
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kim, S.; Kang, M. Comparison of experts’ opinions on international organizations’ and two Koreas’ roles for reforestation in North Korea. Forest Sci. Technol. 2015, 11, 133–138. [Google Scholar] [CrossRef]
- Adachi, M.; Ito, A.; Ishida, A.; Kadir, W.R.; Ladpala, P.; Yamagata, Y. Carbon budget of tropical forests in Southeast Asia and the effects of deforestation: An approach using a process-based model and field measurements. Biogeosciences 2011, 8, 2635–2647. [Google Scholar] [CrossRef] [Green Version]
- Cui, G.; Lee, W.K.; Kim, D.; Lee, E.J.; Kwak, H.; Choi, H.A.; Kwak, D.A.; Jeon, S.; Zhu, W. Estimation of forest carbon budget from land cover change in South and North Korea between 1981 and 2010. J. Plant Biol. 2014, 57, 225–238. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Engler, R.; Teplyakov, V.; Adams, J.M. An Assessment of forest cover trends in South and North Korea, from 1980 to 2010. Environ. Manag. 2014, 53, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Salazar, A.; Katzfey, J.; Thatcher, M.; Syktus, J.; Wong, K.; McAlpine, C. Deforestation changes land–atmosphere interactions across South American biomes. Glob. Planet. Chang. 2016, 139, 97–108. [Google Scholar] [CrossRef]
- Pang, C.; Yu, H.; He, J.; Xu, J. Deforestation and changes in landscape patterns from 1979 to 2006 in Suan County, DPR Korea. Forests 2013, 4, 968–983. [Google Scholar] [CrossRef]
- Kang, S.; Choi, W. Forest cover changes in North Korea since the 1980s. Reg. Environ. Chang. 2014, 14, 347–354. [Google Scholar] [CrossRef]
- Korea Rural Economic Institute. KREI Quarterly Agriculture Trends in North Korea; Korea Rural Economic Institute: Naju, Korea, 2014. [Google Scholar]
- Kraemer, R.; Prishchepov, A.V.; Müller, D.; Kuemmerle, T.; Radeloff, V.C.; Dara, A.; Terekhov, A.; Frühauf, M. Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan. Environ. Res. Lett. 2015, 10, 054012. [Google Scholar] [CrossRef]
- Kocyigit, R.; Demirci, S. Long-term changes of aggregate-associated and labile soil organic carbon and nitrogen after conversion from forest to grassland and cropland in northern Turkey. Land Degrad. Dev. 2012, 23, 475–482. [Google Scholar] [CrossRef]
- Simonneaux, V.; Cheggour, A.; Deschamps, C.; Mouillot, F.; Cerdan, O.; Le Bissonnais, Y. Land use and climate change effects on soil erosion in a semi-arid mountainous watershed (High Atlas, Morocco). J. Arid Environ. 2015, 122, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Folberth, C.; Yang, H.; Gaiser, T.; Liu, J.; Wang, X.; Williams, J.; Schulin, R. Effects of ecological and conventional agricultural intensification practices on maize yields in sub-Saharan Africa under potential climate change. Environ. Res. Lett. 2014, 9, 044004. [Google Scholar] [CrossRef]
- Li, T.; Huang, Y.; Zhang, W.; Yu, Y.Q. Methane emissions associated with the conversion of marshland to cropland and climate change on the Sanjiang Plain of northeast China from 1950 to 2100. Biogeosciences 2012, 9, 5199–5215. [Google Scholar] [CrossRef] [Green Version]
- Feddema, J.J.; Freire, S.C. Soil degradation, global warming and climate impacts. Clim. Res. 2001, 17, 209–216. [Google Scholar] [CrossRef]
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. The EPIC crop growth model. Trans. ASAE 1989, 32, 497–511. [Google Scholar] [CrossRef]
- Liu, J.; Williams, J.R.; Zehnder, A.J.; Yang, H. GEPIC—Modelling wheat yield and crop water productivity with high resolution on a global scale. Agric. Syst. 2007, 94, 478–493. [Google Scholar] [CrossRef]
- Song, Y.; Lim, C.H.; Lee, W.K.; Eom, K.C.; Choi, S.E.; Lee, E.J.; Kim, E. Applicability analysis of major crop models on Korea for the adaptation to climate change. J. Clim. Chang. Res. 2014, 5, 109–125. [Google Scholar] [CrossRef]
- Lim, C.H.; Lee, W.K.; Song, Y.; Eom, K.C. Assessing the EPIC model for estimation of future crops yield in South Korea. J. Clim. Chang. Res. 2015, 6, 21–31. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change (UNFCCC). Modalities and Procedures for Afforestation and Reforestation Activities under the Clean Development Mechanism in the First Commitment Period of the Kyoto Protocol; Decision 19/CP.9, draft decision CMP1 (Land Use, Land-Use Change and Forestry) UNFCCC/SBSTA; UNFCCC: New York, NY, USA, 2003; 19p. [Google Scholar]
- Food Agriculture Organization. Global Forest Resources Assessment 2005; FAO: Rome, Italy, 2006. [Google Scholar]
- Palka, E.J.; Galgano, F.A. North Korea, a Geographical Analysis; Military Academy; West Point: New York, NY, USA, 2003. [Google Scholar]
- Choi, I.H.; Woo, J.C. Developmental process of forest policy direction in Korea and present status of forest desolation in North Korea. J. For. Sci. 2007, 23, 14. [Google Scholar]
- Makowski, D.; Tichit, M.; Guichard, L.; Van Keulen, H.; Beaudoin, N. Measuring the accuracy of agro-environmental indicators. J. Environ. Manag. 2009, 90, S139–S146. [Google Scholar] [CrossRef] [PubMed]
- Castillejo-González, I.L.; López-Granados, F.; García-Ferrer, A.; Peña-Barragán, J.M.; Jurado-Expósito, M.; de la Orden, M.S.; González-Audicana, M. Object-and pixel-based analysis for mapping crops and their agro-environmental associated measures using QuickBird imagery. Comput. Electr. Agric. 2009, 68, 207–215. [Google Scholar] [CrossRef]
- Houlès, V.; Mary, B.; Guérif, M.; Makowski, D.; Justes, E. Evaluation of the ability of the crop model STICS to recommend nitrogen fertilisation rates according to agro-environmental criteria. Agronomie 2004, 24, 339–349. [Google Scholar] [CrossRef]
- Gobin, A.; Jones, R.; Kirkby, M.; Campling, P.; Govers, G.; Kosmas, C.; Gentile, A.R. Indicators for pan-European assessment and monitoring of soil erosion by water. Environ. Sci. Policy 2004, 7, 25–38. [Google Scholar] [CrossRef]
- Yao, Y.; Ye, L.; Tang, H.; Tang, P.; Wang, D.; Si, H.; Hu, W.; Van Ranst, E. Cropland soil organic matter content change in Northeast China, 1985–2005. Open Geosci. 2015, 7, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Centofanti, T.; Hollis, J.M.; Blenkinsop, S.; Fowler, H.J.; Truckell, I.; Dubus, I.G.; Reichenberger, S. Development of agro-environmental scenarios to support pesticide risk assessment in Europe. Sci. Total Environ. 2008, 407, 574–588. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, M. Application of EPIC model for irrigation scheduling of sunflower in Southern Italy. Agric. Water Manag. 2001, 49, 185–196. [Google Scholar] [CrossRef]
- Williams, J.R. The EPIC Model, Computer Models of Watershed Hydrology; VP Singh; Water Resources Publications: Highlands Ranch, CO, USA, 1995; pp. 909–1000. [Google Scholar]
- Liu, J. A GIS based tool for modelling large scale crop water relations. Environ. Model. Softw. 2009, 24, 411–422. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised Universal Soil Loss Equation. J. Soil Water Conserv. 1991, 46, 30–33. [Google Scholar]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Government Printing Office: Washington, DC, USA, 1997; Volume 703.
- Yang, D.; Kanae, S.; Oki, T.; Koike, T.; Musiake, K. Global potential soil erosion with reference to land use and climate changes. Hydrol. Process. 2003, 17, 2913–2928. [Google Scholar] [CrossRef]
- Park, S.; Oh, C.; Jeon, S.; Jung, H.; Choi, C. Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation. J. Hydrol. 2011, 399, 263–273. [Google Scholar] [CrossRef]
- Leonard, R.A.; Knisel, W.G.; Still, D.A. GLEAMS: Groundwater loading effects of agricultural management systems. Trans. ASAE 1987, 30, 1403–1418. [Google Scholar] [CrossRef]
- Williams, J.R.; LaSeur, W.V. Water yield model using SCS curve numbers. J. Hydraul. Div. 1976, 102, 1241–1253. [Google Scholar]
- Knisel, W.G. GLEAMS: Groundwater Loading Effects of Agricultural Management Systems: Version 2.10 (No. 5); University of Georgia Coastal Plain Experiment Station, Department of Biological & Agriculture Engineering: Tifton, GA, USA, 1993. [Google Scholar]
- Williams, J.; Nearing, M.; Nicks, A.; Skidmore, E.; Valentin, C.; King, K.; Savabi, R. Using soil erosion models for global change studies. J. Soil Water Conserv. 1996, 51, 381–385. [Google Scholar]
- Knisel, W.G.; Turtola, E. GLEAMS model application on a heavy clay soil in Finland. Agric. Water Manag. 2000, 43, 285–309. [Google Scholar] [CrossRef]
- Izaurralde, R.C.; Williams, J.R.; McGill, W.B.; Rosenberg, N.J.; Jakas, M.Q. Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecol. Model. 2006, 192, 362–384. [Google Scholar] [CrossRef]
- Lim, C.H.; Kim, D.; Shin, Y.; Lee, W.K. Assessment of drought severity on cropland in Korea Peninsula using normalized precipitation evapotranspiration index (NPEI). J. Clim. Chang. Res. 2015, 6, 223–231. [Google Scholar] [CrossRef]
- Kim, S.N.; Lee, W.K.; Shin, K.I.; Kafatos, M.; Seo, D.J.; Kwak, H. Comparison of spatial interpolation techniques for predicting climate factors in Korea. Forest Sci. Technol. 2010, 6, 97–109. [Google Scholar] [CrossRef]
- Yoo, S.; Kwak, D.A.; Cui, G.; Lee, W.K.; Kwak, H.; Ito, A.; Son, Y.; Jeon, S. Estimation of the ecosystem carbon budget in South Korea between 1999 and 2008. Ecol. Res. 2013, 28, 1045–1059. [Google Scholar] [CrossRef]
- Blackland Research Center: Potential Heat Unit Program 2010. Available online: http://swatmodel.tamu.edu/software/potential-heat-unit-program (accessed on 14 July 2014).
- Folberth, C.; Yang, H.; Gaiser, T.; Abbaspour, K.C.; Schulin, R. Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in SubSaharan Africa. Agric. Syst. 2013, 119, 22–34. [Google Scholar] [CrossRef]
- Batjes, N.H. ISRIC-WISE Derived Soil Properties on a 5 by 5 Arc-Minutes Global Grid; ISRIC—World Soil Information: Wageningen, The Netherlands, 2006. [Google Scholar]
- Food Agriculture Organization. FAO Digital Soil Map of the World; FAO: Rome, Italy, 1995. [Google Scholar]
- Food Agriculture Organization. FertiSTAT—Fertilizer Use Statistics. FAO: Rome, Italy, 2007. Available online: http://www.fao.org/ag/agl/fertistat/index_en.htm (accessed on 11 December 2014).
- You, L.; Crespo, S.; Guo, Z.; Koo, J.; Ojo, W.; Sebastian, K.; Tenorio, M.T.; Wood, S.; Wood-Sichra, U. Spatial Production Allocation Model (SPAM) 2000 Version 3 Release 2; Harvest Choice: Washington, DC, USA, 2010. [Google Scholar]
- Fu, G.; Chen, S.; McCool, D.K. Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS. Soil Tillage Res. 2006, 85, 38–49. [Google Scholar] [CrossRef]
- Meusburger, K.; Mabit, L.; Park, J.H.; Sandor, T.; Alewell, C. Combined use of stable isotopes and fallout radionuclides as soil erosion indicators in a forested mountain site, South Korea. Biogeosciences 2013, 10, 5627–5638. [Google Scholar] [CrossRef] [Green Version]
- Park, S.D.; Lee, K.S.; Shin, S.S. Statistical soil erosion model for burnt mountain areas in Korea—RUSLE Approach. J. Hydrol. Eng. 2012, 17, 292–304. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models: Part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Niu, X.; Easterling, W.; Hays, C.J.; Jacobs, A.; Mearns, L. Reliability and input-data induced uncertainty of the EPIC model to estimate climate change impact on sorghum yields in the US Great Plains. Agric. Ecosyst. Environ. 2009, 129, 268–276. [Google Scholar] [CrossRef]
- Balkovič, J.; van der Velde, M.; Skalský, R.; Xiong, W.; Folberth, C.; Khabarov, N.; Smirnov, A.; Mueller, N.D.; Obersteiner, M. Global wheat production potentials and management flexibility under the representative concentration pathways. Glob. Planet. Chang. 2014, 122, 107–121. [Google Scholar] [CrossRef]
- Korea Forest Service. Annual Report of Forest and Forestry Trend; KFS: Daejeon, Korea, 2009.
- Park, J.H.; Yoo, J. Survey on deforestation of North Korea using remote sensing. J. Environ. Stud. 2009, 48, 3–24. [Google Scholar]
- Yu, J.; Kim, K. Spatio-temporal changes and drivers of deforestation and forest degradation in North Korea. J. Korean Environ. Restor. Technol. 2015, 18, 73–83. [Google Scholar] [CrossRef]
- Kim, E.S.; Lee, S.H.; Cho, H.K. Segment-based Land Cover Classification using Texture Information in Degraded Forest Land of North Korea. Korean J. Remote Sens. 2010, 26, 477–487. [Google Scholar]
- Woo, B.M. Integrated Analytical Study of Runoff Rate and Soil Loss Measurement in Experiments from Forest Lands in Korea; Agricultural Research; Seoul National University: Seoul, Korea, 1984; Volume 9, pp. 11–18. [Google Scholar]
- Turnage, K.M.; Lee, S.Y.; Foss, J.E.; Kim, K.H.; Larsen, I.L. Comparison of soil erosion and deposition rates using radiocesium, RUSLE, and buried soils in dolines in East Tennessee. Environ. Geol. 1997, 29, 1–10. [Google Scholar] [CrossRef]
- Bormann, N.B.; Baxter, C.A.; Andraski, T.W.; Good, L.W.; Bundy, L.G. Scale-of-measurement effects on phosphorus in runoff from cropland. J. Soil Water Conserv. 2012, 67, 122–133. [Google Scholar] [CrossRef]
- VandenBygaart, A.J.; Gregorich, E.G.; Helgason, B.L. Cropland C erosion and burial: Is buried soil organic matter biodegradable? Geoderma 2015, 239, 240–249. [Google Scholar] [CrossRef]
- Olichwer, T.; Tarka, R. Impact of climate change on the groundwater run-off in south-west Poland. Open Geosci. 2015, 7, 1–14. [Google Scholar] [CrossRef]
- Mullan, D.; Favis-Mortlock, D.; Fealy, R. Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. Agric. For. Meteorol. 2012, 156, 18–30. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Ghosh, B.N.; Mishra, P.K.; Mandal, B.; Rao, C.S.; Sarkar, D.; Das, L.; Anil, K.S.; Lalitha, M.; Hati, K.M.; et al. Soil degradation in India: Challenges and potential solutions. Sustainability 2015, 7, 3528–3570. [Google Scholar] [CrossRef]
- Ireson, R. Food Security in North Korea: Designing Realistic Possibilities; Walter H. Shorenstein Asia-Pacific Research Center: Satanford, CA, USA, 2006. [Google Scholar]
- Lim, C.-H.; Kim, S.H.; Choi, Y.; Kafatos, M.C.; Lee, W.-K. Estimation of the Virtual Water Content of Main Crops on the Korean Peninsula Using Multiple Regional Climate Models and Evapotranspiration Methods. Sustainability 2017, 9, 1172. [Google Scholar] [CrossRef]
Deforestation Period | Changes from Forest to Other Land Cover (km2) | |||||
---|---|---|---|---|---|---|
Cropland | Grassland | Urban | Barren | Water | Total | |
1980s to 1990s | 2203 | 1319 | 65 | 124 | 22 | 3733 |
1990s to 2000s | 3569 | 67 | 89 | 107 | 131 | 3963 |
Total | 5772 (75%) | 1386 (18%) | 154 (2%) | 231 (3%) | 153 (2%) | 7696 (100%) |
Expansion Period | Changes from Other Land Cover to Cropland (km2) | |||||
---|---|---|---|---|---|---|
Forest | Grassland | Urban | Barren | Water | Total | |
1980s to 1990s | 1848 | 595 | 62 | 130 | 23 | 2658 |
1990s to 2000s | 4845 | 1127 | 421 | 449 | 161 | 7003 |
Total | 6693 (69%) | 1722 (18%) | 483 (5%) | 579 (6%) | 184 (2%) | 9661 (100%) |
Year | GLDAS Runoff (mm) | GEPIC Runoff (mm) | RMSE | NSEC | RE (%) | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
2001 | 39.64 | 15.81 | 39.51 | 40.04 | 14.26 | −0.10 | 5.54 |
2002 | 18.17 | 17.39 | 56.25 | 53.59 | 32.95 | −3.99 | 53.74 |
2003 | 47.31 | 38.01 | 48.96 | 53.46 | 21.24 | −0.21 | 9.50 |
2004 | 49.73 | 25.57 | 18.95 | 20.82 | 18.29 | −0.69 | −14.94 |
2005 | 47.52 | 22.82 | 54.66 | 56.17 | 23.08 | −2.40 | 11.88 |
2006 | 47.40 | 42.51 | 47.20 | 54.01 | 8.10 | 0.18 | 4.57 |
2007 | 78.44 | 58.50 | 146.59 | 131.95 | 33.26 | −5.79 | 44.28 |
2008 | 37.62 | 19.65 | 61.46 | 60.77 | 16.23 | −2.70 | 28.91 |
2009 | 63.68 | 41.06 | 84.18 | 72.15 | 20.80 | −0.42 | 14.27 |
2010 | 82.47 | 45.96 | 160.83 | 145.10 | 46.89 | −2.53 | 32.09 |
2011 | 47.35 | 28.33 | 67.23 | 72.71 | 19.97 | −1.37 | 18.51 |
2012 | 75.02 | 39.10 | 128.33 | 115.98 | 38.86 | −4.85 | 37.80 |
2013 | 103.66 | 54.41 | 63.50 | 56.75 | 24.76 | −0.33 | −14.73 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, C.-H.; Choi, Y.; Kim, M.; Jeon, S.W.; Lee, W.-K. Impact of Deforestation on Agro-Environmental Variables in Cropland, North Korea. Sustainability 2017, 9, 1354. https://doi.org/10.3390/su9081354
Lim C-H, Choi Y, Kim M, Jeon SW, Lee W-K. Impact of Deforestation on Agro-Environmental Variables in Cropland, North Korea. Sustainability. 2017; 9(8):1354. https://doi.org/10.3390/su9081354
Chicago/Turabian StyleLim, Chul-Hee, Yuyoung Choi, Moonil Kim, Seong Woo Jeon, and Woo-Kyun Lee. 2017. "Impact of Deforestation on Agro-Environmental Variables in Cropland, North Korea" Sustainability 9, no. 8: 1354. https://doi.org/10.3390/su9081354
APA StyleLim, C. -H., Choi, Y., Kim, M., Jeon, S. W., & Lee, W. -K. (2017). Impact of Deforestation on Agro-Environmental Variables in Cropland, North Korea. Sustainability, 9(8), 1354. https://doi.org/10.3390/su9081354