Urban Heat Island and Park Cool Island Intensities in the Coastal City of Aracaju, North-Eastern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Urban Climatological Network
2.2. Dataset Used
2.3. Defining UHI and PCI Intensities
3. Results
3.1. Intraurban Temperatures Sasonal Variation (Hourly Means)
3.2. UHI and PCI Intensity Statistics
3.2.1. Summary of the Data Series
3.2.2. Daily Seasonal Relative Frequencies
3.2.3. Number of Observations of UHI and PCI Intensities Equal to or Greater Than 2 °C
3.3. The Relationship Between UHII and PCII and Wind Speed
3.4. The Relationship Between UHII and PCII and Sky Conditions
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Martin-Vide, J.; Sarricolea, P.; Moreno-García, M.C. On the definition of urban heat island intensity: The “rural” reference. Front. Earth Sci. 2015, 3, 1–6. [Google Scholar] [CrossRef]
- Alcoforado, M.J. Planning Procedures Towards High Climatic Quality Cities: Example referring to Lisbon. Finisterra 2006, 82, 49–64. [Google Scholar] [CrossRef]
- Lopes, A.; Alves, E.; Alcoforado, M.J.; Machete, R. Lisbon Urban Heat Island Updated: New Highlights about the Relationships between Thermal Patterns and Wind Regimes. Adv. Meteorol. 2013, 2013, 1–11. [Google Scholar] [CrossRef]
- Alcoforado, M.J.; Lopes, A.; Alves, E.D.L.; Canario, P. Lisbon Heat Island—Statistical Study 2004–2012. Finisterra 2014, 98, 61–80. [Google Scholar] [CrossRef]
- Morris, C.J.G.; Simmonds, I.; Plummer, N. Quantification of the Influences of Wind and Cloud on the Nocturnal Urban Heat Island of a Large City. J. Appl. Meteorol. 2001, 40, 169–182. [Google Scholar] [CrossRef]
- Oke, T.R.; Maxwell, G.B. Urban heat island dynamics in Montreal and Vancouver. Atmos. Environ. 1975, 9, 191–200. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Oke, T. Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites; IOM Report No. 81, WMO/TD. No. 1250; World Meteorological Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Alexander, P.; Mills, G. Local Climate Classification and Dublin’s Urban Heat Island. Atmosphere 2014, 5, 755–774. [Google Scholar] [CrossRef]
- Anjos, M.; Ganho, N.; de Araújo, H.M. The heat island and relative humidity in Aracaju-Sergipe (Brazil): intensity and behavior itra-daytime. Cad. Geogr. 2014, 33, 47–57. [Google Scholar] [CrossRef]
- Anjos, M.; Ganho, N.; Araújo, H. Uma análise dos contrastes topoclimáticos no espaço urbano e periurbano de Aracajú (SE): Os campos térmicos e higrométricos. Rev. Bras. Climatol. 2013, 13, 298–318. [Google Scholar] [CrossRef]
- Anjos, M. Ambiente urbano: Contrastes térmicos e higrométricos espaciais em Aracaju-Sergipe (Brasil). Master’s thesis, University of Coimbra, Coimbra, Portugal, 2012. [Google Scholar]
- Anjos, M.; Lopes, A.; Alves, E.D.L.; Lucena, A.J. Rede climatológica de mesoescala aplicada ao estudo da Ilha de Calor Urbano: o caso de Aracaju-SE. Caminhos Geogr. 2017, 18, 203–216. [Google Scholar] [CrossRef]
- Stewart, I.D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. 2011, 31, 200–217. [Google Scholar] [CrossRef]
- Oke, T. The need to establish protocols in urban heat island work. Paper presented at the T.R. Oke Symposium & Eighth Symposium on Urban Environment, Phoenix, AZ, USA, 11–15 January 2009; Available online: http://ams.confex.com/ams/89annual/techprogram/paper_150552.htm. (accessed on 12 March 2017).
- Spronken-Smith, R.A.; Oke, T.R. The thermal regime of urban parks in two cities with different summer climates. Int. J. Remote Sens. 1998, 19, 2085–2104. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H.; Vaz, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- De Abreu-Harbich, L.V.; Labaki, L.C.; Matzarakis, A. Effect of tree planting design and tree species on human thermal comfort in the tropics. Landsc. Urban Plan. 2015, 138, 99–109. [Google Scholar] [CrossRef]
- Doick, K.; Hutchings, T. Air Temperature Regulation by Urban Trees and Green Infrastructure; Research Note 12; Forestry Commission: Edinburgh, UK, 2013. [Google Scholar]
- Upmanis, H.; Chen, D. Influence of geographical factors and meteorological variables on nocturnal urban-park temperature differences—A case study of summer 1995 in Göteborg, Sweden. Clim. Res. 1999, 13, 125–139. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Bitan, A. Climatic behavior of various urban parks during hot and humid summer in the mediterranean city of Tel Aviv, Israel. Int. J. Climatol. 2006, 26, 1695–1711. [Google Scholar] [CrossRef]
- Chang, C.-R.; Li, M.-H.; Chang, S.-D. A preliminary study on the local cool-island intensity of Taipei city parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Jauregui, E. Influence of a large urban park on temperature and convective precipitation in a tropical city. Energy Build. 1990, 15, 457–463. [Google Scholar] [CrossRef]
- Muller, C.L.; Chapman, L.; Grimmond, C.S.B.; Young, D.T.; Cai, X.M. Toward a standardized metadata protocol for urban meteorological networks. Bull. Am. Meteorol. Soc. 2013, 94, 1161–1185. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Mills, G.; Bechtel, B.; Ching, J.; See, L.; Feddema, J.; Foley, M.; Alexander, P.; Connor, M.O. An Introduction to the WUDAPT project. In Proceedings of the ICUC9—9th International Conference on Urban Climate, Toulouse, France, 20–24 July 2015. [Google Scholar]
- Bechtel, B.; Alexander, P.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS Int. J. Geo-Inf. 2015, 4, 199–219. [Google Scholar] [CrossRef]
- Anjos, M.; Lopes, A. Urban Heat Island first statistical assessment based on an mesoscale climatological network in Aracaju/Brazil. In Proceedings of the 9th International Conference on Urban Climate, Toulouse, France, 20–24 July 2015. [Google Scholar]
- Lin, T.P. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build. Environ. 2009, 44, 2017–2026. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C.S.B. Continuous sky view factor maps from high resolution urban digital elevation models. Clim. Res. 2010, 42, 177–183. [Google Scholar] [CrossRef]
- García, F.F. Manual de Climatología Aplicada: Clima, Medio Ambiente y Planificación; Síntesis: Madrid, Spain, 1995. (In Spanish) [Google Scholar]
- Yang, X.; Li, Y.; Luo, Z.; Chan, P.W. The urban cool island phenomenon in a high-rise high-density city and its mechanisms. Int. J. Climatol. 2017, 37, 890–904. [Google Scholar] [CrossRef]
- Gedzelman, S.D.; Austin, S.; Cermak, R.; Stefano, N.; Partridge, S. Mesoscale aspects of the Urban Heat Island around New York City. Theor. Appl. Climatol. 2003, 42, 29–42. [Google Scholar]
- Figuerola, P.I.; Mazzeo, N.A. Urban-rural temperature differences in Buenos Aires. Int. J. Climatol. 1998, 18, 1709–1723. [Google Scholar] [CrossRef]
- Oke, T.R.; Zeuner, G.; Jauregui, E. The surface energy balance in Mexico City. Atmos. Environ. Part B. Urban Atmos. 1992, 26, 433–444. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Kim, Y.H.; Baik, J.J. Daily maximum urban heat island intensity in large cities of Korea. Theor. Appl. Climatol. 2004, 79, 151–164. [Google Scholar] [CrossRef]
- Camilloni, I.; Barrucand, M. Temporal variability of the Buenos Aires, Argentina, urban heat island. Theor. Appl. Climatol. 2012, 107, 47–58. [Google Scholar] [CrossRef]
- Alonso, M.; Fidalgo, M.; Labajo, J. The urban heat island in Salamanca (Spain) and its relationship to meteorological parameters. Clim. Res. 2007, 34, 39–46. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Baik, J.-J. Maximum Urban Heat Island Intensity in Seoul. J. Appl. Meteorol. 2002, 41, 651–659. [Google Scholar] [CrossRef]
- Oke, T. Boundary Layer Climates, 2nd ed.; Routledge: London, UK, 1987. [Google Scholar]
- Lee, S.-H.; Lee, K.-S.; Jin, W.-C.; Song, H.-K. Effect of an urban park on air temperature differences in a central business district area. Landsc. Ecol. Eng. 2009, 5, 183–191. [Google Scholar] [CrossRef]
- Saito, I.; Ishihara, O.; Katayama, T. Study of the effect of green areas on the thermal environment in an urban area. Energy Build. 1990, 15, 493–498. [Google Scholar] [CrossRef]
Urban Station (Sensor) | LCZ Types | Local Scale (>1 km2) 1 | ||||
---|---|---|---|---|---|---|
SVF (0 to 1) | Built-Up Area (%) | Impervious Surface (%) | Vegetated Area (%) | Water Bodies (%) | ||
Siqueira Campos | Compact low-rise (LCZ 3) | 0.808 | 76.6 | 96 | 3.4 | 0 |
Centro da Cidade | Compact low-rise (LCZ 3) | 0.708 | 69.3 | 93 | 2.2 | 0 |
Jardins | Open high-rise (LCZ 4) | 0.768 | 66.5 | 70.7 | 12.4 | 6.4 |
Parque da Cidade | Dense trees (LCZ A) | 0.948 | 5.5 | 7.5 | 53 | 0 |
Santa Maria | Lightweight low-rise (LCZ 7) | 0.953 | 23 | 49.3 | 9.4 | 0 |
José Sarney Beach | Open low-rise (LCZ 6) | 0.965 | 12.4 | 23.6 | 6 | 50 |
Zona de Expansão | Sparsely built (LCZ 9) | 0.981 | 21 | 30.5 | 24 | 0 |
Wind Speed | Mean Intensity (°C) | |||
---|---|---|---|---|
Class (ms−1) | No. of Observations | Frequency (%) | UHI | PCI |
0 < x ≤ 2 | 905 | 5.7 | 0.7 | 1.6 |
2 < x ≤ 4 | 3468 | 22 | 0.6 | 1.7 |
4 < x ≤ 6 | 7000 | 44.5 | 0.6 | 1.5 |
6 < x ≤ 8 | 3308 | 21 | 0.6 | 1.1 |
8 < x ≤ 10 | 310 | 2 | 0.4 | 0.6 |
>10 | 4 | 0 | 0.3 | 0.3 |
Cases not analyzed | 645 | 4 | - | - |
Total | 15,640 | 100 | - | - |
Sky Conditions | Mean Intensity (°C) | |||
---|---|---|---|---|
Categories | No. of Observations | Frequency (%) | UHI | PCI |
Clear sky | 726 | 4.5 | 0.5 | 1.2 |
Partly cloudy | 11,942 | 76 | 0.6 | 1.4 |
Very cloudy | 1630 | 13.5 | 0.7 | 1.5 |
Overcast sky | 4 | 0 | 0.2 | 2.0 |
Cases not analyzed | 908 | 6 | - | - |
Total | 15,640 | 100 | - | - |
Critical Wind Speed (ms−1) | City | Reference |
---|---|---|
11 | Busan | Kim and Baik [37] |
10 | Bueno Aires | Camilloni and Barrucand [38] |
9.4 | Daegu | Kim and Baik [37] |
8 | Lisbon | Lopes et al. [3] |
7.8 | Aracaju | This study |
7 | Salamanca | Alonso et al. [39] |
7 | Seoul | Kim and Baik [40] |
6.4 | Daegreon | Kim and Baik [37] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anjos, M.; Lopes, A. Urban Heat Island and Park Cool Island Intensities in the Coastal City of Aracaju, North-Eastern Brazil. Sustainability 2017, 9, 1379. https://doi.org/10.3390/su9081379
Anjos M, Lopes A. Urban Heat Island and Park Cool Island Intensities in the Coastal City of Aracaju, North-Eastern Brazil. Sustainability. 2017; 9(8):1379. https://doi.org/10.3390/su9081379
Chicago/Turabian StyleAnjos, Max, and António Lopes. 2017. "Urban Heat Island and Park Cool Island Intensities in the Coastal City of Aracaju, North-Eastern Brazil" Sustainability 9, no. 8: 1379. https://doi.org/10.3390/su9081379
APA StyleAnjos, M., & Lopes, A. (2017). Urban Heat Island and Park Cool Island Intensities in the Coastal City of Aracaju, North-Eastern Brazil. Sustainability, 9(8), 1379. https://doi.org/10.3390/su9081379