Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach
Abstract
:1. Introduction
2. Study Areas
3. Methods and Data Sources
3.1. MuSIASEM
3.1.1. Methodological Framework
3.1.2. Hierarchical Levels and Variables
3.1.3. Sustainable Urban Development and the MuSIASEM Framework
3.2. Complete Decomposition Model
3.3. Data Sources
4. Results
4.1. Level n: City Level
4.2. Level n − 1: Production and Consumption
4.3. Level n − 2: Primary, Secondary and Tertiary Sectors
4.4. Ecological Pressure and Social Welfare
5. Discussions
5.1. Comparison with Previous Studies
5.2. Urban Metabolism Profiles and Evolution Trajectories
Beijing: Metabolic Pattern Dominated by Service
Tianjin: Metabolic Pattern Dominated by Technology and Capital Aggregation
Tangshan: Metabolic Pattern Dominated by Traditional Industry
5.3. Relationships among Economic Growth, Energy Consumption and Ecological Pressure
5.4. Policy Implications for Sustainability Development
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- The United Nations Environment Programme. Global Initiative for Resource efficient Cities: Engine to Sustainability. Available online: http://gallery.mailchimp.com/ca9c1fdc492e0cdf6766c8a26/files/GI_REC_flyer_4pager_EN_CF.pdf (accessed on 3 March 2017).
- 2014 Revision of the World Urbanization Prospects. Available online: http://www.un.org/en/development/desa/publications/2014-revision-world-urbanization-prospects.html (accessed on 1 March 2017).
- Wolman, A. The Metabolism of Cities. Sci. Am. 1965, 213, 179. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.; Cuddihy, J.; Engel-Yan, J. The changing metabolism of cities. J. Ind. Ecol. 2007, 11, 43–59. [Google Scholar] [CrossRef]
- Kennedy, C.; Pincetl, S.; Bunje, P. The study of urban metabolism and its applications to urban planning and design. Environ. Pollut. 2011, 159, 1965–1973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Urban metabolism: A review of research methodologies. Environ. Pollut. 2013, 178, 463. [Google Scholar] [CrossRef] [PubMed]
- Rosado, L.; Kalmykova, Y.; Patrício, J. Urban metabolism profiles. An empirical analysis of the material flow characteristics of three metropolitan areas in Sweden. J. Clean. Prod. 2016, 126, 206–217. [Google Scholar] [CrossRef]
- Lee, S.E.; Quinn, A.D.; Rogers, C.D. Advancing City Sustainability via Its Systems of Flows: The Urban Metabolism of Birmingham and Its Hinterland. Sustainability 2016, 8, 220. [Google Scholar] [CrossRef]
- Liu, C.; Shi, X.; Qu, L.; Li, B. Comparative analysis for the urban metabolic differences of two types of cities in the resource-dependent region based on emergy theory. Sustainability 2016, 8, 635. [Google Scholar] [CrossRef]
- Sun, L.; Dong, H.; Geng, Y.; Li, Z.; Liu, Z.; Fujita, T.; Ohnishi, S.; Fujii, M. Uncovering driving forces on urban metabolism—A case of Shenyang. J. Clean. Prod. 2016, 114, 171–179. [Google Scholar] [CrossRef]
- Moore, J.; Kissinger, M.; Rees, W.E. An urban metabolism and ecological footprint assessment of Metro Vancouver. J. Environ. Manag. 2013, 124, 51. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Zhang, L.; Chen, X.; Xue, B.; Fujita, T.; Dong, H. Urban ecological footprint analysis: A comparative study between Shenyang in China and Kawasaki in Japan. J. Clean. Prod. 2014, 75, 130–142. [Google Scholar] [CrossRef]
- Giampietro, M.; Mayumi, K. A dynamic model of socioeconomic systems based on hierarchy theory and its application to sustainability. Struct. Chang. Econ. Dyn. 1997, 8, 453–469. [Google Scholar] [CrossRef]
- Giampietro, M.; Mayumi, K. Multiple-Scale Integrated Assessment of Societal Metabolism: Introducing the Approach. Popul. Environ. 2000, 22, 109–153. [Google Scholar] [CrossRef]
- Giampietro, M.; Mayumi, K. Multiple-Scale Integrated Assessments of Societal Metabolism: Integrating Biophysical and Economic Representations across Scales. Popul. Environ. 2000, 22, 155–210. [Google Scholar] [CrossRef]
- Pastore, G.; Giampietro, M.; Mayumi, K. Societal Metabolism and Multiple-Scale Integrated Assessment: Empirical Validation and Examples of Application. Popul. Environ. 2000, 22, 211–254. [Google Scholar] [CrossRef]
- Giampietro, M.; Mayumi, K.; Bukkens, S.G.F. Multiple-Scale Integrated Assessment of Societal Metabolism: An Analytical Tool to Study Development and Sustainability. Environ. Dev. Sustain. 2001, 3, 275–307. [Google Scholar] [CrossRef]
- Giampietro, M.; Mayumi, K.; Ramos-Martin, J. Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale. Energy 2009, 34, 313–322. [Google Scholar] [CrossRef]
- Sorman, A.H.; Giampietro, M. Generating better energy indicators: Addressing the existence of multiple scales and multiple dimensions. Ecol. Model. 2011, 223, 41–53. [Google Scholar] [CrossRef]
- Giampietro, M.; Bukkens, S.G.F. Analogy between Sudoku and the multi-scale integrated analysis of societal metabolism. Ecol. Inf. 2015, 26, 18–28. [Google Scholar] [CrossRef]
- Falconí-Benítez, F. Integrated Assessment of the Recent Economic History of Ecuador. Popul. Environ. 2001, 22, 257–280. [Google Scholar] [CrossRef]
- Ramos-Martín, J. Historical Analysis of Energy Intensity of Spain: From a “Conventional View” to an “Integrated Assessment”. Popul. Environ. 2001, 22, 281–313. [Google Scholar] [CrossRef]
- Ramos-Martin, J.; Giampietro, M.; Mayumi, K. On China’s exosomatic energy metabolism: An application of multi-scale integrated analysis of societal metabolism (MSIASM). Ecol. Econ. 2007, 63, 174–191. [Google Scholar] [CrossRef]
- Gasparatos, A.; El-Haram, M.; Horner, M. Assessing the sustainability of the UK society using thermodynamic concepts: Part 1. Renew. Sustain. Energy Rev. 2009, 13, 1074–1081. [Google Scholar] [CrossRef]
- Ramos-Martín, J.; Cañellas-Boltà, S.; Giampietro, M.; Gamboa, G. Catalonia’s energy metabolism: Using the MuSIASEM approach at different scales. Energy Policy 2009, 37, 4658–4671. [Google Scholar] [CrossRef]
- Ariza-Montobbio, P.; Farrell, K.N.; Gamboa, G.; Ramos-Martin, J. Integrating energy and land-use planning: Socio-metabolic profiles along the rural–urban continuum in Catalonia (Spain). Environ. Dev. Sustain. 2014, 16, 925–956. [Google Scholar] [CrossRef]
- Lobo Aleu, A.; Baeza, M.Á. A First Attempt of Geographically-Distributed Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM); Institut de Ciència i Tecnologia Ambientals (ICTA-UAB): Barcelona, Spain, 2009. [Google Scholar]
- Lu, Y.; Geng, Y.; Qian, Y.; Han, W.; Mcdowall, W.; Bleischwitz, R. Changes of human time and land use pattern in one mega city’s urban metabolism: A multi-scale integrated analysis of Shanghai. J. Clean. Prod. 2016, 133, 391–401. [Google Scholar] [CrossRef]
- Silva-Macher, J.C. A Metabolic Profile of Peru: An Application of Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) to the Mining Sector’s Exosomatic Energy Flows. J. Ind. Ecol. 2016, 20, 1072–1082. [Google Scholar] [CrossRef]
- Gomiero, T.; Giampietro, M. Multiple-Scale Integrated Analysis of Farming Systems: The Thuong Lo Commune (Vietnamese Uplands) Case Study. Popul. Environ. 2001, 22, 315–352. [Google Scholar] [CrossRef]
- Iorgulescu, R.I.; Polimeni, J.M. A multi-scale integrated analysis of the energy use in Romania, Bulgaria, Poland and Hungary. Energy 2009, 34, 341–347. [Google Scholar] [CrossRef]
- Velasco-Fernández, R.; Ramos-Martín, J.; Giampietro, M. The energy metabolism of China and India between 1971 and 2010: Studying the bifurcation. Renew. Sustain. Energy Rev. 2015, 41, 1052–1066. [Google Scholar] [CrossRef]
- Geng, Y.; Liu, Y.; Liu, D.; Zhao, H.; Xue, B. Regional societal and ecosystem metabolism analysis in China: A multi-scale integrated analysis of societal metabolism(MSIASM) approach. Energy 2011, 36, 4799–4808. [Google Scholar] [CrossRef]
- Siciliano, G.; Crociata, A.; Turvani, M. A Multi-level Integrated Analysis of Socio-Economic Systems Metabolism: An Application to the Italian Regional Level. Environ. Policy Gov. 2012, 22, 350–368. [Google Scholar] [CrossRef]
- China Statistical Yearbook 2015. Available online: http://www.stats.gov.cn/tjsj/ndsj/2015/indexeh.htm (accessed on 20 November 2016).
- Beijing Statistical Yearbook 2015. Available online: http://www.stats.gov.cn/tjsj/ndsj/2015/indexeh.htm (accessed on 20 November 2016).
- Beijing Statistical Yearbook 2013. Available online: http://www.bjstats.gov.cn/nj/main/2013_ch/index.htm (accessed on 20 November 2016).
- Tianjin Statistical Yearbook 2015. Available online: http://www.stats-tj.gov.cn/Item/25712.aspx (accessed on 21 November 2016).
- Tangshan Statistical Yearbook 2015. Available online: http://nianjian.xiaze.com/down/2016/tangshantjnj-xls-2015.html (accessed on 22 November 2016).
- Fischer-Kowalski, M. Society’s metabolism. J. Ind. Ecol. 1998, 2, 61–78. [Google Scholar] [CrossRef]
- Lotka, A.J. Elements of Mathematical Biology; Dover Publications Inc.: New York, NY, USA, 1956. [Google Scholar]
- Nicholas, G.-R. The Entropy Law and the Economic Process; Harvard University Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Ulanowicz, R.E. Growth and Development: Ecosystems Phenomenology; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Odum, E.P.; Odum, H.T.; Andrews, J. Fundamentals of Ecology; Saunders: Philadelphia, PA, USA, 1971; Volume 3. [Google Scholar]
- Kingsley Zipf, G. National Unity and Disunity. (Scientific Books: National Unity and Disunity). Science 1941, 94, 19. [Google Scholar]
- Hall, C.A.; Cleveland, C.J.; Kaufmann, R.K.; Behler, D. Energy and Resource Quality: The Ecology of the Economic Process; Saunders: Philadelphia, PA, USA, 1986. [Google Scholar]
- World Commission on Environment. Our Common Future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Serageldin, I. Making development sustainable. Financ. Dev. 1993, 30, 6. [Google Scholar]
- Eisenmenger, N.; Giljum, S. Evidence from societal metabolism studies for ecological unequal trade. In The World System and the Earth System: Global Socioenvironmental Change and Sustainability Since the Neolithic; Left Coast Press: Walnut Creek, CA, USA, 2007; pp. 288–302. [Google Scholar]
- Niu, W. The Overview of China’s Sustainable Development; Science Press: Beijing, China, 2012. [Google Scholar]
- Sun, J. Changes in energy consumption and energy intensity: A complete decomposition model. Energy Econ. 1998, 20, 85–100. [Google Scholar] [CrossRef]
- Dai, G.Y.; Jiao, L. A Societal Metabolism Analysis of Shanghai Based on MSIASM Theory and Carbon Emissions from Energy Consumption. Shanghai Environ. Sci. 2013, 32, 254–270. [Google Scholar]
- Northam, R.M. Urban Geography; John Wiley and Sons: New York, NY, USA, 1979. [Google Scholar]
- Kuznets, S. Quantitative aspects of the economic growth of nations: II. industrial distribution of national product and labor force. Econ. Dev. Cult. Chang. 1957, 5, 1–111. [Google Scholar] [CrossRef]
- Qiang, W. Effects of urbanisation on energy consumption in China. Energy Policy 2014, 65, 332–339. [Google Scholar]
- Wang, Q.; Zeng, Y.-E.; Wu, B.-W. Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China. Renew. Sustain. Energy Rev. 2016, 54, 1563–1579. [Google Scholar] [CrossRef]
- Gao, C.; Liu, Y.; Jin, J.; Wei, T.; Zhang, J.; Zhu, L. Driving forces in energy-related carbon dioxide emissions in east and south coastal China: Commonality and variations. J. Clean. Prod. 2016, 135, 240–250. [Google Scholar] [CrossRef]
- Cleveland, C.J.; Costanza, R.; Hall, C.A.; Kaufmann, R. Energy and the u.s. Economy: A biophysical perspective. Science 1984, 225, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, H.; Yang, Z.; Li, Y.; Liu, G.; Su, M.; Yin, X. Urban energy flow processes in the Beijing–Tianjin–Hebei (Jing-Jin-Ji) urban agglomeration: Combining multi-regional input–output tables with ecological network analysis. J. Clean. Prod. 2016, 114, 243–256. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Guan, D.; Liu, Z.; Meng, J.; Zhang, N.; Wei, Y.M. Unequal household carbon footprints in China. Nat. Clim. Chang. 2017, 7, 75–80. [Google Scholar] [CrossRef]
- Brelsford, C.; Lobo, J.; Hand, J.; Lma, B. Heterogeneity and scale of sustainable development in cities. Proc. Natl. Acad. Sci. USA 2017, 201606033. [Google Scholar] [CrossRef] [PubMed]
Variables | Abbreviation | Nature | Calculation Formulas | Unit |
---|---|---|---|---|
Total human activity | THA | Fund | THA = Population × 8760 (365 days and 24 h per day) | h |
Human activity in sector i | HAi | Fund | HAPW = HA1 + HA2 + HA3 HAHH = THA − HAPW | h |
Total energy throughput | TET | Flow | TET = ETPW + ETHH | PJ |
Energy throughput in sector i | ETi | Flow | ETPW = ET1 + ET2 + ET3 | PJ |
Gross domestic product | GDP | Flow | - | US$ |
Added value in sector i | GDPi | Flow | - | US$ |
Energy intensity of societal average/sector i | EISA/EIi | Flow–flow ratio | EISA = TET/GDP EIi = ETi/GDPi | MJ/US$ |
Economic labour productivity of sector i | ELPi | Flow–fund ratio | ELPPW = GDP/HAPW ELPi = GDPi/HAi | US$/h |
Exosomatic metabolic rate of societal average/sector i | EMRSA/EMRi | Flow–fund ratio | EMRSA = TET/THA EMRi = ETi/HAi | MJ/h |
Societal overhead of human activity | SOHA | Fund–fund ratio | SOHA = HAHH/HAPW | h/h |
Biological–economic pressure | BEP | Flow–fund ratio | BEP = TET/(HA1 + HA2) | MJ/h |
Variables | THA/HAi | TET/ETi | GDP/GDPi | EIi | ELPi | EMRi | SOHA | BEP | |
---|---|---|---|---|---|---|---|---|---|
Dimesions | |||||||||
Development | √ | √ | |||||||
Coordination | √ | √ | √ | ||||||
Sustainability | √ | √ | √ |
Year | Beijing | Tianjin | Tangshan | ||||||
---|---|---|---|---|---|---|---|---|---|
GDP (Billion US$) | THA (Billion h) | TET (PJ) | GDP (Billion US$) | THA (Billion h) | TET (PJ) | GDP (Billion US$) | THA (Billion h) | TET (PJ) | |
2005 | 67.5 | 134.7 | 1616.3 | 39.6 | 91.4 | 1204.6 | 20.1 | 63.6 | 1748.5 |
2006 | 76.3 | 140.2 | 1728.2 | 45.5 | 94.2 | 1324.6 | 23.0 | 64.2 | 1946.3 |
2007 | 87.4 | 146.8 | 1839.7 | 52.5 | 97.7 | 1447.3 | 26.5 | 64.7 | 2149.1 |
2008 | 95.4 | 155.1 | 1852.0 | 61.2 | 103.0 | 1570.0 | 29.9 | 65.1 | 2276.0 |
2009 | 105.1 | 162.9 | 1923.2 | 71.3 | 107.6 | 1719.4 | 33.3 | 65.4 | 2402.2 |
2010 | 116.0 | 171.9 | 2034.3 | 83.7 | 113.8 | 1995.7 | 37.7 | 66.4 | 2612.8 |
2011 | 125.4 | 176.8 | 2044.5 | 97.4 | 118.7 | 2224.1 | 42.1 | 66.8 | 2796.2 |
2012 | 135.0 | 181.3 | 2098.7 | 110.9 | 123.8 | 2402.6 | 46.5 | 67.2 | 2866.8 |
2013 | 145.4 | 185.3 | 1968.1 | 124.7 | 129.0 | 2582.6 | 50.3 | 67.5 | 2970.4 |
2014 | 156.0 | 188.5 | 1999.6 | 137.2 | 132.9 | 2384.1 | 52.9 | 68.0 | 2375.0 |
Annual growth rate | 8.9% | 3.6% | 3.0% | 13.0% | 3.5% | 8.0% | 10.5% | 0.6% | 5.8% |
Sub-Sectors of Industry Sector | Energy Intensity (MJ/US$) | ||
---|---|---|---|
Beijing | Tianjin | Tangshan | |
Processing of petroleum, coking and nuclear fuel | 126.1 | 108.1 | 105.0 |
Manufacture of raw chemical materials and products | 62.7 | 94.6 | 159.2 |
Manufacture of non-metallic mineral products | 89.7 | 48.7 | 80.5 |
Manufacture and pressing of ferrous metals | 96.9 | 103.9 | 144.6 |
Manufacture of medicines | 4.6 | 2.1 | 17.9 |
Manufacture of motor vehicles | 5.7 | 4.6 | 7.7 |
Manufacture of railway, watercraft, aerospace and other transport equipment | 7.1 | 5.4 | 7.5 |
Computer, communication equipment and other electronic equipment | 11.3 | 3.7 | 8.3 |
Year | BEP (MJ/h) | SOHA (h/h) | ||||
---|---|---|---|---|---|---|
Beijing | Tianjin | Tangshan | Beijing | Tianjin | Tangshan | |
2005 | 233.0 | 156.6 | 262.3 | 5.5 | 5.8 | 5.8 |
2006 | 258.4 | 170.9 | 295.0 | 5.4 | 6.0 | 5.8 |
2007 | 284.8 | 179.8 | 335.7 | 5.8 | 5.6 | 6.0 |
2008 | 313.8 | 194.3 | 362.0 | 6.0 | 5.8 | 6.0 |
2009 | 335.2 | 205.4 | 361.7 | 6.2 | 5.7 | 5.7 |
2010 | 335.5 | 218.6 | 383.0 | 6.2 | 5.5 | 5.5 |
2011 | 330.8 | 242.5 | 409.6 | 6.1 | 5.5 | 5.6 |
2012 | 350.3 | 252.0 | 413.2 | 6.1 | 5.4 | 5.5 |
2013 | 333.6 | 254.7 | 429.3 | 6.0 | 5.3 | 5.5 |
2014 | 343.3 | 243.7 | 347.6 | 6.0 | 5.3 | 5.5 |
Urban/Region/Nation | EMRSA (MJ/h) | ELPPW (US$/h) | BEP (MJ/h) | SOHA (h/h) | Year of Study | Reference |
---|---|---|---|---|---|---|
Beijing | 11.8 | 4.9 | 335.5 | 6.2 | 2010 | |
Tianjin | 17.5 | 4.7 | 218.6 | 5.5 | 2010 | |
Tangshan | 39.3 | 3.7 | 383.0 | 5.5 | 2010 | |
Shanghai | 16.2 | 279.3 | 2010 | [52] | ||
China | 8.6 | 1.8 | 86.6 | 5.6 | 2010 | [32] |
Veneto Region | 11.8 | 32.2 | 289.4 | 9.1 | 2007 | [34] |
Catalonia Region | 18.4 | 31.5 | 518.5 | 9.6 | 2005 | [25] |
Peru | 3.1 | 0.4 | 56.6 | 6.4 | 2010 | [29] |
UK | 18.7 | 843.5 | 10.0 | 2004 | [24] | |
Brazil | 5.2 | 4.3 | 8.8 | 2000 | [29] | |
AUSCAN (Australia, USA and Canada) | 38.8 | 8.6 | 1999 | [23] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wu, S.; Li, S. Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach. Sustainability 2017, 9, 1481. https://doi.org/10.3390/su9081481
Wang X, Wu S, Li S. Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach. Sustainability. 2017; 9(8):1481. https://doi.org/10.3390/su9081481
Chicago/Turabian StyleWang, Xiaoyue, Shuyao Wu, and Shuangcheng Li. 2017. "Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach" Sustainability 9, no. 8: 1481. https://doi.org/10.3390/su9081481
APA StyleWang, X., Wu, S., & Li, S. (2017). Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach. Sustainability, 9(8), 1481. https://doi.org/10.3390/su9081481