RPV Model Parameters Based on Hyperspectral Bidirectional Reflectance Measurementsof Fagus sylvatica L. Leaves
Abstract
:1. Introduction
- The inversion of the widely applied Rahman-Pinty-Verstraete (RPV) model based on eight Bidirectional Reflectance Factor (BRF) data sets of leaves in the 400 to 2,500 nm spectral range.
- The evaluation of the retrieved RPV parameters based on four measured BRF data sets by comparison among modelled and measured leaf BRF values along the full hyperspectral dynamic range of the spectroradiometer.
2. Theoretical background: RPV model description
3. Data description
4. Methodology
4.1. Leaf variance
4.2. RPV inversion
5. Results and Discussion
5.1. BRF variance
5.2. RPV model
Viewing Conditions Principal plane | rho0 | k | Θ | |||
---|---|---|---|---|---|---|
Mean | St. dev | Mean | St. dev | Mean | St. dev | |
550 nm | 0.161 | 0.83 × 10-2 | 0.903 | 2.43 × 10-2 | 0.159 | 0.43 × 10-2 |
850 nm | 0.718 | 1.09 × 10-2 | 0.954 | 2.93 × 10-2 | 0.101 | 0.27 × 10-2 |
1,650 nm | 0.599 | 0.99 × 10-2 | 0.996 | 1.38 × 10-2 | 0.103 | 0.36 × 10-2 |
Viewing Conditions Principal plane | Light source zenith | Chi2 | p-value |
---|---|---|---|
550 nm | 15° | 7.805 | 15.51 |
850 nm | 15° | 6.576 | 15.51 |
1,650 nm | 15° | 6.781 | 15.51 |
550 nm | 60° | 7.845 | 15.51 |
850 nm | 60° | 6.543 | 15.51 |
1,650 nm | 60° | 6.762 | 15.51 |
6. Conclusions and Recommendations
Acknowledgements
References and Notes
- Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 1998, 64, 234–253. [Google Scholar] [CrossRef]
- Boucher, Y.; Cosnefroy, H.; Petit, D.; Serrot, G.; Briottet, X. Comparison of measured and modeled BRDF of natural targets. In N° 3699-02 SPIE AeroSense; Orlando, FL, USA, April 1999; pp. 16–26. [Google Scholar]
- Maignan, F.; Bréon, F.M.; Lacaze, R. Bidirectional reflectance of earth targets, evaluation of analytical models using a large set of spaceborne measurements with emphasis on the hot spot. Remote Sens. Environ. 2004, 90, 210–220. [Google Scholar] [CrossRef]
- Schönermark, M.; Geiger, B.; Röser, H.P. Reflection Properties of Vegetation and Soil with a BRDF Data base; Wissenschaft und Technik Verlag: Berlin, Germany, 2004; p. 352. [Google Scholar]
- Roujean, J.-L.; Leroy, M.; Deschamps, P.Y. A bi-directional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. 1992, 97, 20455–20468. [Google Scholar] [CrossRef]
- Rahman, H.; Verstraete, M.M.; Pinty, B. Coupled Surface-Atmosphere Reflectance (CSAR) model 1. Mmodel description and inversion on synthetic data. J. Geophys. Res. 1993, 98, 20779–20789. [Google Scholar] [CrossRef]
- Rahman, H.; Pinty, B.; Verstraete, M.M. Coupled Surface-Atmosphere Reflectance (CSAR) model 2. Semiempirical surface model usable with noaa advanced very high resolution radiometer data. J. Geophys. Res. 1993, 98, 20791–20781. [Google Scholar] [CrossRef]
- Pinty, B.; Widlowski, J.-L.; Taberner, M.; Gobron, N.; Verstraete, M.M.; Disney, M.; Gascon, F.; Gastellu, J.-P.; Jiang, L.; Kuusk, A.; Lewis, P.; Li, X.; Ni-Meister, W.; Nilson, T.; North, P.; Qin, W.; Su, L.; Tang, S.; Thompson, R.; Verhoef, W.; Wang, H.; Wang, J.; Yan, G.; Zang, H. Radiation Transfer Model Intercomparison (RAMI) exercise, results from the second phase. J. Geophys. Res. 2004, 109, D06210. [Google Scholar] [CrossRef]
- Widlowski, J.-L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.; Fernandes, R.; Gastellu-Etchegorry, J.-P.; Gobron, N.; Kuusk, A.; Lavergne, T.; Leblanc, S.; Lewis, P.E.; Martin, E.; Mõttus, M.; North, P.R.J.; Qin, W.; Robustelli, M.; Rochdi, N.; Ruiloba, R.; Soler, C.; Thompson, R.; Verhoef, W.; Verstraete, M.M.; Xie, D. Third Radiation Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance modeling. J. Geophys. Res. 2007, 112, D09111. [Google Scholar] [CrossRef]
- Zhang, Z.; Kalluri, S.; JaJa, J.; Liang, S.; Townshend, J.R.G. High performance algorithms for global BRDF retrieval. IEEE Comput. Sci. Eng. 1998, 4, 16–29. [Google Scholar] [CrossRef]
- Gobron, N.; Lajas, D. A new inversion scheme for the RPV model. Can. J. Remote Sens. 2002, 28, 156–167. [Google Scholar] [CrossRef]
- Lavergne, T.; Kaminski, T.; Pinty, B.; Taberner, M.; Gobron, N.; Verstraete, M.M.; Vossbeck, V.; Widlowski, J.-L.; Giering, R. Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes. Remote Sens. Environ. 2007, 107, 362–375. [Google Scholar] [CrossRef]
- Li, X.; Strahler, A.H. Geometrical - optical modelling of a conifer forest canopy. IEEE Trans. Geosci. Remote Sens. 1985, 23, 705–721. [Google Scholar] [CrossRef]
- Walter-Shea, E.A.; Norman, J.M.; Blad, B.L. Leaf bidirectional reflectance and transmittance in corn and soybean. Remote Sens. Environ. 1989, 29, 161–174. [Google Scholar] [CrossRef]
- Pinty, B.; Verstraete, M.M.; Gobron, N. The effect of soil anisotropy on the radiance field emerging from vegetation canopies. Geophys. Res. Lett. 1998, 25, 797–800. [Google Scholar] [CrossRef]
- Biliouris, D.; Verstraeten, W.W.; Dutré, P.; Aardt, J.A.N.; Muys, B.; Coppin, P. A Compact Laboratory Spectro-Goniometer (CLabSpeG) to assess the BRDF of materials. Presentation, calibration and implementation on Fagus sylvatica L. leaves. Sensors 2007, 7, 1846–1870. [Google Scholar] [CrossRef]
- Verstraete, M.M.; Pinty, B.; Myneni, R.B. Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing. Remote Sens. Environ. 1996, 58, 201–215. [Google Scholar] [CrossRef]
- Martonchik, J.V.; Diner, D.J.; Kahn, R.A.; Ackerman, T.P.; Verstraete, M.M.; Pinty, B.; Gordon, H.R. Techniques for retrieval of aerosol properties over land and ocean using multiangle imaging. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1212–1227. [Google Scholar] [CrossRef]
- Lattanzio, A.; Govaerts, Y.M.; Pinty, B. Consistency of surface anisotropy characterization with meteosat observations. Adv. Space Res. 2007, 39, 131–135. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T. First operational BRDF, albedo and nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Widlowski, J-L.; Pinty, B.; Gobron, N.; Verstraete, M.M.; Davies, A.B. Characterization of surface heterogeneity detected at the MISR/TERRA subpixel scale. Geophys. Res. Lett. 2001, 28, 4639–4642. [Google Scholar]
- Gao, F.; Schaaf, C.B.; Strahler, A.H.; Jin, Y.; Li, X. Detecting vegetation structure using a kernel-based BRDF model. Remote Sens. Environ. 2003, 86, 198–205. [Google Scholar] [CrossRef]
- Engelsen, O.; Pinty, B.; Verstraete, M.M.; Martonchik, J.V. Parametric bidirectional reflectance factor models: evaluation, improvements and applications. In Catalogue CL-NA-16426-EN-C, ECSC-EC-EAEC.; Brussels, Luxembourg, 1996; p. 114. [Google Scholar]
- Minnaert, M. The reciprocity principle in lunar photometry. Astrophys. J. 1941, 93, 403–410. [Google Scholar] [CrossRef]
- Henyey, L.G.; Greenstein, T.L. Diffuse radiation in the galaxy. Astrophys. J. 1941, 93, 70–83. [Google Scholar] [CrossRef]
- Sandmeier, St. Acquisition of bidirectional reflectance factor data with field goniometers. Remote Sens. Environ. 2000, 73, 257–269. [Google Scholar] [CrossRef]
- Nicodemus, F.E.; Richmond, J.C.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T. Geometrical considerations and nomenclature for reflectance. In National Bureau Standards Monograph; Inst. for Basic Standards: Washington, DC. USA, 1977; p. 160. [Google Scholar]
- Martonchik, J.V.; Bruegge, C.J.; Strahler, A.H. A review of reflectance nomenclature used in remote sensing. Remote Sens. Rev. 2000, 19, 9–20. [Google Scholar] [CrossRef]
- Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote sensing -definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Dangel, S.; Verstraete, M.M.; Schopfer, J.; Kneubuhler, M.; Schaepman, M.; Itten, K.I. Toward a direct comparison of field and laboratory goniometer measurements. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2666–2675. [Google Scholar] [CrossRef]
- Bousquet, L.; Lachérade, S.; Jacquemoud, S.; Moya, I. Leaf BRDF measurements and model for specular and diffuse components differentiation. Remote Sens. Environ. 2005, 98, 201–211. [Google Scholar] [CrossRef]
- Boucher, Y. Analyzing some models for a given type of surface. In Reflection Properties of Vegetation and Soil with a BRDF Data base; Schönermark, M., Geiger, B., Röser, H.P., Eds.; Wissenschaft und Technik Verlag: Berlin, Germany, 2004; pp. 121–129. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Biliouris, D.; Van der Zande, D.; Verstraeten, W.W.; Stuckens, J.; Muys, B.; Dutré, P.; Coppin, P. RPV Model Parameters Based on Hyperspectral Bidirectional Reflectance Measurementsof Fagus sylvatica L. Leaves. Remote Sens. 2009, 1, 92-106. https://doi.org/10.3390/rs1020092
Biliouris D, Van der Zande D, Verstraeten WW, Stuckens J, Muys B, Dutré P, Coppin P. RPV Model Parameters Based on Hyperspectral Bidirectional Reflectance Measurementsof Fagus sylvatica L. Leaves. Remote Sensing. 2009; 1(2):92-106. https://doi.org/10.3390/rs1020092
Chicago/Turabian StyleBiliouris, Dimitrios, Dimitry Van der Zande, Willem W. Verstraeten, Jan Stuckens, Bart Muys, Philip Dutré, and Pol Coppin. 2009. "RPV Model Parameters Based on Hyperspectral Bidirectional Reflectance Measurementsof Fagus sylvatica L. Leaves" Remote Sensing 1, no. 2: 92-106. https://doi.org/10.3390/rs1020092
APA StyleBiliouris, D., Van der Zande, D., Verstraeten, W. W., Stuckens, J., Muys, B., Dutré, P., & Coppin, P. (2009). RPV Model Parameters Based on Hyperspectral Bidirectional Reflectance Measurementsof Fagus sylvatica L. Leaves. Remote Sensing, 1(2), 92-106. https://doi.org/10.3390/rs1020092