Evaluating Principal Components Analysis for Identifying Optimal Bands Using Wetland Hyperspectral Measurements From the Great Lakes, USA
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Site
2.2. Data Collection
MUSKEGON | U.S. 127 | ||
---|---|---|---|
Eleocharis rostellata | E | Asclepias incarnata | F |
Elodea canadensis | S | Cephalanthus occidentalis | Sr |
Filamentous algae | Fl | Cyperus esculentus | R |
Heteranthera dubia | S | Eleocharis rostellata | E |
Iris versicolor | E | Leersia orxyzoides | G |
Leersia orxyzoides | G | Lemna minor | Fl |
Lemna minor | Fl | Najas sp. | S |
Lythrum salicaria | E | Phalaris arundinacea (Green) | G |
Myriophyllum spicatum | S | Phragmites australis | E |
Nuphar lutea | Fl | Sagittaria latifolia | E |
Nymphaea odorata | Fl | Salix nigra | Sr |
Phragmites australis | E | Schoenoplectus pungens | R |
Poa sp. | G | Scirpus sp. (1) | R |
Polygonum hydropiperoides | F | Scirpus sp. (2) | R |
Pontederia cordata | E | Soldago gigantea | F |
Potamogeton crispus | S | Sparganium androcladum | E |
Sagittaria latifolia | E | Typha latifolia | E |
Salix nigra | S | ||
Schoenoplectus tabernaemontani | E | ||
Spaganium americanum | E | ||
Typha angustifolia | E | ||
Vallisnera americana | S |
2.3. Botanical Sub-Categorization
2.4. Analysis
3. Results and Discussion
3.1. Site/Location Specificity
3.2. Botanical Sub-Categories
3.3. Covariance PCA versus Correlation PCA
3.4. Re-Sampling Strategies
4. Conclusions
- The data dependency of PCA makes it inappropriate for optimal band selection when used alone.
- It does not promote diagnostic comparison of multiple sites.
- It prohibits an analyst from exploring the biophysical reflectance differences between the categories without thorough interpretation of the bands identified.
- Neither correlation-based nor covariance-based PCA consistently identified similar spectral bands other than the beginning of the NIR edge (~700), so both types of PCA should be computed. Combined PCA bands identified included 425, 514/560 and 635/731.
- In-situ hyperspectral data with extremely narrow (i.e., 1-3 nm) bands need to be spectrally re-sampled in order to define useable, optimal bands via PCA.
Acknowledgements
References and Notes
- Schmidt, K.; Skidmore, A. Spectral discrimination of vegetation types in a coastal wetland. Remote Sens. Environ. 2003, 85, 92–108. [Google Scholar] [CrossRef]
- Becker, B.; Lusch, D.; Qi, J. Identifying optimal spectral bands from in situ measurements of great Lakes coastal wetlands using second derivative analysis. Remote Sens. Environ. 2005, 97, 238–248. [Google Scholar] [CrossRef]
- Becker, B.L.; Lusch, D.P.; Qi, J. A classification-based assessment of the optimal spectral and spatial resolutions of coastal wetland imagery. Remote Sens. Environ. 2007, 108, 111–120. [Google Scholar] [CrossRef]
- Torbick, N.; Becker, B. Characterizing field-level hyperspectral measurements for identifying wetland invasive plant species. In Invasive Species: Detection, Impact and Control Editors; Wilcox, C.P., Turpin, R.B., Eds.; Nova Science Publishers: New York, NY, USA, 2009; pp. 97–115. [Google Scholar]
- Campbell, J. Introduction to Remote Sensing; Guilford Press: New York, NY, USA, 2007. [Google Scholar]
- Lillesand, T.; Kiefer, R.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Holden, H.; LeDrew, E. Spectral discrimination of healthy and non-healthy corals based on cluster analysis, principal components analysis and derivative spectroscopy. Remote Sens. Environ. 1998, 65, 217–224. [Google Scholar] [CrossRef]
- Zhao, G.; Maclean, L. A comparison of canonical discriminant analysis and principal component analysis for spectral transformation. Photogramm. Eng. Remote Sens. 2000, 66, 841–847. [Google Scholar]
- Schaepman-Strub, G.; Schaepmen, M.; Painter, T.; Dangel, S.; Martonchik, J. Reflectance quantities in optical remote sensing – definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Davis, J. Statistics and Data Analysis in Geology; John Wiley & Sons: New York, NY, USA, 1986. [Google Scholar]
- Rummel, R.J. Applied Factor Analysis; Northwestern University Press: Evanston, IL, USA, 1970. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Torbick, N.; Becker, B. Evaluating Principal Components Analysis for Identifying Optimal Bands Using Wetland Hyperspectral Measurements From the Great Lakes, USA. Remote Sens. 2009, 1, 408-417. https://doi.org/10.3390/rs1030408
Torbick N, Becker B. Evaluating Principal Components Analysis for Identifying Optimal Bands Using Wetland Hyperspectral Measurements From the Great Lakes, USA. Remote Sensing. 2009; 1(3):408-417. https://doi.org/10.3390/rs1030408
Chicago/Turabian StyleTorbick, Nathan, and Brian Becker. 2009. "Evaluating Principal Components Analysis for Identifying Optimal Bands Using Wetland Hyperspectral Measurements From the Great Lakes, USA" Remote Sensing 1, no. 3: 408-417. https://doi.org/10.3390/rs1030408
APA StyleTorbick, N., & Becker, B. (2009). Evaluating Principal Components Analysis for Identifying Optimal Bands Using Wetland Hyperspectral Measurements From the Great Lakes, USA. Remote Sensing, 1(3), 408-417. https://doi.org/10.3390/rs1030408