Assessing Spatiotemporal Characteristics of Urbanization Dynamics in Southeast Asia Using Time Series of DMSP/OLS Nighttime Light Data
Abstract
:1. Introduction
2. Study Area and Data Acquisition
2.1. Study Area
2.2. Data Source and Preprocessing
2.2.1. Administrative Division Data
2.2.2. Normal Differential Vegetation Index (NDVI) Products
2.2.3. DMSP/OLS Nighttime Lights
2.2.4. Integration of NDVI Time Series for Southeast Asia
2.2.5. Global Urban Footprint
3. Methods
3.1. Calibration of the Nighttime Light Data
3.1.1. Intercalibration
3.1.2. Intra-Annual Composition
3.1.3. Enhancement of Variability
3.2. The Spatial Gradient of Nighttime Lights
3.3. Spatial Partition of Nighttime Lighting Areas
4. Results
4.1. Evaluation of the Calibration Results
4.2. Spatiotemporal Trends of Nighttime Lighting Types
4.3. Spatiotemporal Transitions of Nighttime Lighting Types
4.4. Responses of Nighttime Lighting Types to Human Settlements
5. Discussion
5.1. Comparison with Existing Research
5.1.1. The Scale of the Fitted Quadratic Polynomial
5.1.2. The Calculations of Partitioning Intervals
5.2. Limitation and Future Perspective
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
No. | Satellite | Year | a | b | R2 |
---|---|---|---|---|---|
1 | F10 | 1992 | 1.0390 | 1.074 | 0.9923 |
2 | F10 | 1993 | 1.5700 | 0.919 | 0.9910 |
3 | F10 | 1994 | 1.5900 | 0.9155 | 0.9932 |
4 | F12 | 1994 | 1.0770 | 0.9859 | 0.9917 |
5 | F12 | 1995 | 1.3480 | 0.9239 | 0.9937 |
6 | F12 | 1996 | 1.4530 | 0.9100 | 0.9933 |
7 | F12 | 1997 | 1.2140 | 0.9444 | 0.9941 |
8 | F12 | 1998 | 1.2610 | 0.9084 | 0.9944 |
9 | F12 | 1999 | 1.2500 | 0.9059 | 0.9933 |
10 | F14 | 1997 | 1.4820 | 0.9817 | 0.9930 |
11 | F14 | 1998 | 1.9310 | 0.8785 | 0.9929 |
12 | F14 | 1999 | 1.6640 | 0.9147 | 0.9959 |
13 | F14 | 2000 | 1.8760 | 0.8574 | 0.9960 |
14 | F14 | 2001 | 1.4650 | 0.9363 | 0.9966 |
15 | F14 | 2002 | 1.7610 | 0.8383 | 0.9942 |
16 | F14 | 2003 | 1.6280 | 0.889 | 0.9970 |
17 | F15 | 2000 | 1.4320 | 0.8506 | 0.9923 |
18 | F15 | 2001 | 1.1610 | 0.9374 | 0.9937 |
19 | F15 | 2002 | 1.0980 | 0.9467 | 0.9948 |
20 | F15 | 2003 | 1.8230 | 0.8815 | 0.9944 |
21 | F15 | 2004 | 1.6450 | 0.9044 | 0.9969 |
22 | F15 | 2005 | 1.7500 | 0.8586 | 0.9944 |
23 | F15 | 2006 | 1.6580 | 0.8938 | 0.9977 |
24 | F15 | 2007 | 1.7850 | 0.8824 | 0.9979 |
25 | F16 | 2004 | 1.4090 | 0.9044 | 0.9932 |
26 | F16 | 2005 | 1.3890 | 0.9793 | 0.9977 |
27 | F16 | 2006 | 1.1420 | 0.9827 | 0.9990 |
28 | F16 | 2007 | 1.0810 | 0.9588 | 0.9968 |
29 | F16 | 2008 | 1.2040 | 0.9348 | 0.9951 |
30 | F16 | 2009 | 1.3200 | 0.9228 | 0.9949 |
31 | F18 | 2010 | 0.8010 | 0.9771 | 0.9963 |
32 | F18 | 2011 | 1.4390 | 0.8205 | 0.9916 |
33 | F18 | 2012 | 1.0190 | 0.9285 | 0.9963 |
34 | F18 | 2013 | 1.2810 | 0.8603 | 0.9950 |
Year | a | b | c | R2 |
---|---|---|---|---|
1992 | −0.006272 | 0.3581 | −0.1520 | 0.7540 |
1993 | −0.007492 | 0.3520 | −0.4060 | 0.7392 |
1994 | −0.008074 | 0.3603 | −0.4186 | 0.7452 |
1995 | −0.008351 | 0.3360 | −0.3476 | 0.7201 |
1996 | −0.00874 | 0.3517 | −0.3926 | 0.7252 |
1997 | −0.007868 | 0.3660 | −0.4985 | 0.7857 |
1998 | −0.008155 | 0.3405 | −0.4484 | 0.7559 |
1999 | −0.008209 | 0.3399 | −0.4743 | 0.7474 |
2000 | −0.006048 | 0.3080 | −0.3878 | 0.7477 |
2001 | −0.006207 | 0.3402 | −0.4097 | 0.7753 |
2002 | −0.006679 | 0.3280 | −0.4120 | 0.7427 |
2003 | −0.005403 | 0.3228 | −0.3689 | 0.7866 |
2004 | −0.006221 | 0.3455 | −0.4316 | 0.7677 |
2005 | −0.005472 | 0.3345 | −0.3934 | 0.7934 |
2006 | −0.005931 | 0.3402 | −0.4111 | 0.7796 |
2007 | −0.006236 | 0.3334 | −0.3334 | 0.7434 |
2008 | −0.006794 | 0.3364 | −0.3134 | 0.6917 |
2009 | −0.007111 | 0.3583 | −0.3674 | 0.7009 |
2010 | −0.00811 | 0.3171 | −0.2354 | 0.6810 |
2011 | −0.008429 | 0.3222 | −0.3227 | 0.7444 |
2012 | −0.007755 | 0.3185 | −0.1935 | 0.7419 |
2013 | −0.007508 | 0.2991 | −0.1245 | 0.6972 |
References
- Cohen, B. Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technol. Soc. 2006, 28, 63–80. [Google Scholar] [CrossRef]
- Montgomery, M.R. The urban transformation of the developing world. Science 2008, 319, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Cheng, W.M.; Zhou, C.H.; Li, M.C.; Wang, N.; Liu, Q.Y. GDP spatialization and economic differences in South China based on NPP-VIIRS nighttime light imagery. Remote Sens. 2017, 9, 673. [Google Scholar] [CrossRef]
- Johnson, M.P. Environmental impacts of urban sprawl: A survey of the literature and proposed research agenda. Environ. Plan. A 2001, 33, 717–735. [Google Scholar] [CrossRef]
- Shukla, V.; Parikh, K. The environmental consequences of urban growth: Cross-national perspectives on economic development, air pollution, and city size. Urban Geogr. 1992, 13, 422–449. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Anderson, S.J.; Sutton, P.C.; Ghosh, T. The night light development index (NLDI): A spatially explicit measure of human development from satellite data. Soc. Geogr. Discuss. 2012, 7, 23–35. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- Ghosh, T.; Anderson, S.J.; Elvidge, C.D.; Sutton, P.C. Using nighttime satellite imagery as a proxy measure of human well-being. Sustainability 2013, 5, 4988–5019. [Google Scholar] [CrossRef]
- Ghosh, T.; Powell, R.L.; Elvidge, C.D.; Baugh, K.E.; Sutton, P.C.; Anderson, S. Shedding light on the global distribution of economic activity. Open Geogr. 2010, 3, 148–161. [Google Scholar] [CrossRef]
- Sutton, P.C. A scale-adjusted measure of “Urban sprawl” using nighttime satellite imagery. Remote Sens. Environ. 2003, 86, 353–369. [Google Scholar] [CrossRef]
- Sutton, P.C.; Roberts, D.; Elvidge, C.; Baugh, K. Census from heaven: An estimate of the global human population using night-time satellite imagery. Int. J. Remote Sens. 2001, 22, 3061–3076. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, W.M.; Zhou, C.H.; Li, M.C.; Wang, N.; Liu, Q.Y. Spatial differentiation and morphologic characteristics of China’s urban core zones based on geomorphologic partition. J. Appl. Remote Sens. 2017, 11, 016041. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, W.M.; Liu, Q.Y.; Wang, N. Spatiotemporal measurement of urbanization levels based on multiscale units: A case study of the Bohai Rim Region in China. J. Geogr. Sci. 2016, 26, 531–548. [Google Scholar] [CrossRef]
- Chen, X.; Nordhaus, W.D. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. USA 2011, 108, 8589–8594. [Google Scholar] [CrossRef] [PubMed]
- Doll, C.N.H.; Muller, J.P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.H.; Pei, T.; Haynie, S.; Fan, J.F. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Zhou, Y.K.; Ma, T.; Zhou, C.H.; Xu, T. Nighttime light derived assessment of regional inequality of socioeconomic development in China. Remote Sens. 2015, 7, 1242–1262. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Imura, H.; Higashi, O. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 2205–2209. [Google Scholar] [CrossRef]
- Henderson, M.; Yeh, E.T.; Gong, P.; Elvidge, C.; Baugh, K. Validation of urban boundaries derived from global night-time satellite imagery. Int. J. Remote Sens. 2003, 24, 595–609. [Google Scholar] [CrossRef]
- Xiao, P.F.; Wang, X.H.; Feng, X.Z.; Zhang, X.L.; Yang, Y.K. Detecting China’s urban expansion over the past three decades using nighttime light data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4095–4106. [Google Scholar] [CrossRef]
- Xie, Y.H.; Weng, Q.H. Updating urban extents with nighttime light imagery by using an object-based thresholding method. Remote Sens. Environ. 2016, 187, 1–13. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.G.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sens Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP operational linescan system. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP-OLS “City Lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Kamarajugedda, S.A.; Mandapaka, P.V.; Lo, E.Y.M. Assessing urban growth dynamics of major Southeast Asian cities using night-time light data. Int. J. Remote Sens. 2017, 38, 6073–6093. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, Y.K.; Zhou, C.H.; Haynie, S.; Pei, T.; Xu, T. Night-time light derived estimation of spatio-temporal characteristics of urbanization dynamics using DMSP/OLS satellite data. Remote Sens. Environ. 2015, 158, 453–464. [Google Scholar] [CrossRef]
- Su, Y.X.; Chen, X.Z.; Wang, C.Y.; Zhang, H.O.; Liao, J.S.; Ye, Y.Y.; Wang, C.J. A new method for extracting built-up urban areas using DMSP-OLS nighttime stable lights: A case study in the Pearl River Delta, southern China. GISci. Remote Sens. 2015, 52, 218–238. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.O.; Huang, G.Z.; Jin, L.X.; Lin, L.Y. Different characteristics and driving factors of the comprehensive urbanization levels of countries in Southeast Asia. Trop. Geogr. 2015, 35, 680–686. (In Chinese) [Google Scholar] [CrossRef]
- Aritenang, A.F. Urbanization in Southeast Asia: Issues and impacts. Bull. Indones. Econ. Stud. 2014, 50, 144. [Google Scholar] [CrossRef]
- Li, X.H.; Liu, J.L.; Gibson, V.; Zhu, Y.G. Urban sustainability and human health in China, East Asia and Southeast Asia. Curr. Opin. Environ. Sustain. 2012, 4, 436–442. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Liu, Z.F.; He, C.Y.; Zhang, Q.F.; Huang, Q.X.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Wu, J.S.; He, S.B.; Peng, J.; Li, W.F.; Zhong, X.H. Intercalibration of DMSP-OLS night-time light data by the invariant region method. Int. J. Remote Sens. 2013, 34, 7356–7368. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Schaaf, C.; Seto, K.C. The vegetation adjusted NTL urban index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sens. Environ. 2013, 129, 32–41. [Google Scholar] [CrossRef]
- He, C.Y.; Shi, P.J.; Li, J.G.; Chen, J.; Pan, Y.Z.; Li, J.; Zhuo, L.; Ichinose, T. Restoring urbanization process in China in the 1990s by using non-radiance-calibrated DMSP/OLS nighttime light imagery and statistical data. Chin. Sci. Bull. 2006, 51, 1614–1620. [Google Scholar] [CrossRef]
- Liu, J.Y.; Kuang, W.H.; Zhang, Z.X.; Xu, X.L.; Qin, Y.W.; Ning, J.; Zhou, W.; Zhang, S.; LI, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Baugh, K.; Hsu, F.C.; Elvidge, C.D.; Zhizhin, M. Nighttime lights compositing using the VIIRS day-night band: Preliminary results. Proc. Asia Pac. Adv. Netw. 2013, 35, 70–86. [Google Scholar] [CrossRef]
- Miller, S.D.; Mills, S.P.; Elvidge, C.D.; Lindsey, D.T.; Lee, T.F.; Hawkins, J.D. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities. Proc. Natl. Acad. Sci. USA 2012, 109, 15706–15711. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.B.; Ma, M.G.; Yang, H.; Ge, W. Modeling the spatiotemporal dynamics of gross domestic product in China using extended temporal coverage nighttime light data. Remote Sens. 2017, 9, 626. [Google Scholar] [CrossRef]
Point | DN Value | Brightness Gradient (BG) |
---|---|---|
, | ||
, | ||
1992 | N | N | N | N | N | Total | |
---|---|---|---|---|---|---|---|
2002 | N | L | M | H | EH | ||
2013 | L | 159,092 | 212,266 | - | - | - | 371,358 |
M | 4796 | 25,789 | 11,868 | - | - | 42,453 | |
H | 419 | 757 | 1404 | 698 | - | 3278 | |
EH | 19 | 26 | 48 | 73 | 36 | 202 |
1992 | L | L | L | L | M | M | M | H | H | EH | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2002 | L | M | H | EH | M | H | EH | H | EH | EH | ||
2013 | L | 36,076 | - | - | - | - | - | - | - | - | - | 36,076 |
M | 17,397 | 30,968 | - | - | 6926 | - | - | - | - | - | 55,291 | |
H | 268 | 5587 | 2637 | - | 2520 | 9487 | - | 5892 | - | - | 26,391 | |
EH | 4 | 143 | 232 | 133 | 51 | 514 | 564 | 519 | 1698 | 901 | 4759 |
Figure Code | Study Area | Country | Region Scale |
---|---|---|---|
a | Bangkok | Thailand | capital; largest city |
b | Jakarta | Indonesia | capital; largest city |
b | Bandung | Indonesia | third-largest city |
c | Mandalay | Myanmar | second-largest city |
d | Phnom Penh | Cambodia | capital; largest city |
e | Vientiane | Laos | capital |
f | Kuala Lumpur | Malaysia | capital; largest city |
g | Manila | Philippines | capital |
h | Singapore | Singapore | city-state |
i | Ho Chi Minh | Vietnam | largest city |
j | Hanoi | Vietnam | capital; third-largest city |
k | Brunei | Brunei | country |
l | Yangon | Myanmar | largest city |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Cheng, W.; Zhou, C.; Li, M.; Huang, K.; Wang, N. Assessing Spatiotemporal Characteristics of Urbanization Dynamics in Southeast Asia Using Time Series of DMSP/OLS Nighttime Light Data. Remote Sens. 2018, 10, 47. https://doi.org/10.3390/rs10010047
Zhao M, Cheng W, Zhou C, Li M, Huang K, Wang N. Assessing Spatiotemporal Characteristics of Urbanization Dynamics in Southeast Asia Using Time Series of DMSP/OLS Nighttime Light Data. Remote Sensing. 2018; 10(1):47. https://doi.org/10.3390/rs10010047
Chicago/Turabian StyleZhao, Min, Weiming Cheng, Chenghu Zhou, Manchun Li, Kun Huang, and Nan Wang. 2018. "Assessing Spatiotemporal Characteristics of Urbanization Dynamics in Southeast Asia Using Time Series of DMSP/OLS Nighttime Light Data" Remote Sensing 10, no. 1: 47. https://doi.org/10.3390/rs10010047
APA StyleZhao, M., Cheng, W., Zhou, C., Li, M., Huang, K., & Wang, N. (2018). Assessing Spatiotemporal Characteristics of Urbanization Dynamics in Southeast Asia Using Time Series of DMSP/OLS Nighttime Light Data. Remote Sensing, 10(1), 47. https://doi.org/10.3390/rs10010047