Satellite Retrieval of Surface Water Nutrients in the Coastal Regions of the East China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Samples
2.2.1. Hydrological and Water Quality Data
2.2.2. Measuring Remote-Sensing Reflectance
2.3. Satellite Data
2.4. Artificial Neural Network
3. Developed Satellite Retrieval Models for Nutrients
3.1. Correlation between Nutrients and Rrs or SSS
3.2. Training and Validation of the Neural Network
4. Results
4.1. Evaluation of Satellite-Retrieved Rrs
4.2. Evaluation of Satellite-Measured Salinity
4.3. Satellite-Derived Monthly Variations in Nutrients
5. Discussion
5.1. Comparison with Spectrum-Based Algorithms
5.2. Factors Impacting Nutrient Distributions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Feng, S.Z.; Li, F.Q.; Li, S.J. Introduction to Oceanography; Higher Education Press: Beijing, China, 1999. [Google Scholar]
- Chai, C.; Yu, Z.; Song, X.; Cao, X. The Status and Characteristics of Eutrophication in the Yangtze River (Changjiang) Estuary and the Adjacent East China Sea, China. Hydrobiologia 2006, 563, 313–328. [Google Scholar] [CrossRef]
- Hautier, Y.; Hector, A. Competition for Light Causes Plant Biodiversity Loss after Eutrophication. Science 2009, 324, 636–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heisler, J.; Glibert, P.M.; Burkholder, J.M.; Anderson, D.M.; Cochlan, W.; Dennison, W.C.; Dortch, Q.; Gobler, C.J.; Heil, C.A.; Humphries, E.; et al. Eutrophication and Harmful Algal Blooms: A Scientific Consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Chang, N.B.; Xuan, Z.; Yang, Y.J. Exploring spatiotemporal patterns of phosphorus concentrations in a coastal bay with MODIS images and machine learning models. Remote Sens. Environ. 2013, 134, 100–110. [Google Scholar] [CrossRef]
- Yu, X.; Yi, H.; Liu, X.; Wang, Y.; Liu, X.; Zhang, H. Remote-sensing estimation of dissolved inorganic nitrogen concentration in the Bohai Sea using band combinations derived from MODIS data. Int. J. Remote Sens. 2016, 37, 327–340. [Google Scholar] [CrossRef] [Green Version]
- Kassi, J.-B.; Racault, M.-F.; Mobio, B.A.; Platt, T.; Sathyendranath, S.; Raitsos, D.E.; Affian, K. Remotely Sensing the Biophysical Drivers of Sardinella aurita Variability in Ivorian Waters. Remote Sens. 2018, 10, 785. [Google Scholar] [CrossRef]
- Pan, J.; Huang, L.; Devlin, A.T.; Lin, H. Quantification of Typhoon-Induced Phytoplankton Blooms Using Satellite Multi-Sensor Data. Remote Sens. 2018, 10, 318. [Google Scholar] [CrossRef]
- Markogianni, V.; Kalivas, D.; Petropoulos, G.P.; Dimitriou, E. An Appraisal of the Potential of Landsat 8 in Estimating Chlorophyll-a, Ammonium Concentrations and Other Water Quality Indicators. Remote Sens. 2018, 10, 1018. [Google Scholar] [CrossRef]
- Choi, J.K.; Park, Y.J.; Ahn, J.H.; Lim, H.S.; Eom, J.; Ryu, J.H. GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity. J. Geophys. Res. Oceans 2012, 117, C09004. [Google Scholar] [CrossRef]
- He, X.; Bai, Y.; Pan, D.; Huang, N.; Dong, X.; Chen, J.; Chen, C.T.; Cui, Q. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters. Remote Sens. Environ. 2013, 133, 225–239. [Google Scholar] [CrossRef]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Brodie, J.; Schroeder, T.; Rohde, K.; Faithful, J.; Masters, B.; Dekker, A.; Brando, V.; Maughan, M. Dispersal of suspended sediments and nutrients in the Great Barrier Reef lagoon during river-discharge events: Conclusions from satellite remote sensing and concurrent flood-plume sampling. Mar. Freshw. Res. 2010, 61, 651–664. [Google Scholar] [CrossRef]
- Huang, C.; Guo, Y.; Yang, H.; Li, Y.; Zou, J.; Zhang, M.; Lyu, H.; Zhu, A.; Huang, T. Using remote sensing to track variation in phosphorus and its interaction with chlorophyll-a and suspended sediment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4171–4180. [Google Scholar] [CrossRef]
- Huang, Y.; Fan, D.; Liu, D.; Song, L.; Ji, D.; Hui, E. Nutrient estimation by HJ-1 satellite imagery of Xiangxi Bay, Three Gorges Reservoir, China. Environ. Earth Sci. 2016, 75, 633. [Google Scholar] [CrossRef]
- Edmond, J.M.; Boyle, E.A.; Grant, B.; Stallard, R.F. The chemical mass balance in the Amazon plume I: The nutrients. Deep Sea Res. Part A Oceanogr. Res. Pap. 1981, 28, 1339–1374. [Google Scholar] [CrossRef]
- Zhang, J. Nutrient elements in large Chinese estuaries. Cont. Shelf Res. 1996, 16, 1023–1045. [Google Scholar] [CrossRef]
- Changjiang Water Resources Commission. Changjiang Sediment Bulletin 2016. Available online: http://www.cjw.gov.cn/UploadFiles/zwzc/2018/8/201808271416045463.pdf (accessed on 30 September 2018). (In Chinese)
- Tong, Y.; Bu, X.; Chen, J.; Zhou, F.; Chen, L.; Liu, M.; Tan, X.; Yu, T.; Zhang, W.; Mi, Z.; et al. Estimation of nutrient discharge from the Yangtze River to the East China Sea and the identification of nutrient sources. J. Hazard. Mater. 2017, 321, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wei, H.; Liu, Z.; Zhao, L. Seasonal variability of air–sea CO2 fluxes in the Yellow and East China Seas: A case study of continental shelf sea carbon cycle model. Cont. Shelf Res. 2015, 107, 69–78. [Google Scholar] [CrossRef]
- Li, H.; Kang, X.; Li, X.; Li, Q.; Song, J.; Jiao, N.; Zhang, Y. Heavy metals in surface sediments along the weihai coast, china: Distribution, sources and contamination assessment. Mar. Pollut. Bull. 2017, 115, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, S.; Wang, Z.; Jing, W.; Xu, Y.; Zhang, Z.; Tan, E.; Dai, M. Tidal variability of nutrients in a coastal coral reef system influenced by groundwater. Biogeosciences 2018, 15, 997–1009. [Google Scholar] [CrossRef] [Green Version]
- Han, A.; Dai, M.; Kao, S.J.; Gan, J.; Li, Q.; Wang, L.; Zhai, W.; Wang, L. Nutrient dynamics and biological consumption in a large continental shelf system under the influence of both a river plume and coastal upwelling. Limnol. Oceanogr. 2012, 57, 486–502. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Pan, D.; Cai, W.J.; He, X.; Wang, D.; Tao, B.; Zhu, Q. Remote sensing of salinity from satellite-derived CDOM in the Changjiang River dominated East China Sea. J. Geophys. Res. Oceans 2013, 118, 227–243. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Pan, D.; Bai, Y.; He, X.; Wang, D.; Wei, J.A.; Zhang, L. Remote sensing observation of particulate organic carbon in the Pearl River Estuary. Remote Sens. 2015, 7, 8683–8704. [Google Scholar] [CrossRef]
- Keiner, L.E. Estimating oceanic chlorophyll concentrations with neural networks. Int. J. Remote Sens. 1999, 20, 189–194. [Google Scholar] [CrossRef]
- Pomero, L.R.; Smith, E.E.; Grant, C.M. The exchange of phosphate between estuarine water and sediments. Limnol. Oceanogr. 1965, 10, 167–172. [Google Scholar]
- Mayer, L.M.; Gloss, S.P. Buffering of silica and phosphate in a turbid river. Limnol. Oceanogr. 1980, 25, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Pulliainen, J.; Koponen, S.; Hallikainen, M. Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data. Remote Sens. Environ. 2002, 81, 327–336. [Google Scholar] [CrossRef]
- Wang, M.; Gordon, H.R. A simple, moderately accurate, atmospheric correction algorithm for seawifs. Remote Sens. Environ. 1994, 50, 231–239. [Google Scholar] [CrossRef]
- He, X.; Bai, Y.; Pan, D.; Tang, J.; Wang, D. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters. Opt. Express 2012, 20, 20754–20770. [Google Scholar] [CrossRef] [PubMed]
- Oo, M.; Vargas, M.; Gilerson, A.; Gross, B.; Moshary, F.; Ahmed, S. Improving atmospheric correction for highly productive coastal waters using the short wave infrared retrieval algorithm with water-leaving reflectance constraints at 412 nm. Appl. Opt. 2008, 47, 3846–3859. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.D.; Wang, X.L.; Zhan, R. Nutrient conditions in the Yellow Sea and the East China Sea. Estuar. Coast. Shelf Sci. 2003, 58, 127–136. [Google Scholar] [CrossRef]
- Arteaga, L.; Pahlow, M.; Oschlies, A. Global monthly sea surface nitrate fields estimated from remotely sensed sea surface temperature, chlorophyll, and modeled mixed layer depth. Geophys. Res. Lett. 2015, 42, 1130–1138. [Google Scholar] [CrossRef] [Green Version]
- Sarangi, R.K. Remote-sensing-based estimation of surface nitrate and its variability in the southern peninsular Indian waters. Int. J. Oceanogr. 2012, 2011, 172731. [Google Scholar] [CrossRef]
- Switzer, A.C.; Kamykowski, D.; Zentara, S.J. Mapping nitrate in the global ocean using remotely sensed sea surface temperature. J. Geophys. Res. Oceans 2003, 108, 3280. [Google Scholar] [CrossRef]
- Garcia, H.E.; Locarnini, R.A.; Boyer, T.P.; Antonov, J.I.; Baranova, O.K.; Zweng, M.M.; Reagan, J.R.; Johnson, D.R. World Ocean Atlas 2013, Volume 4: Dissolved Inorganic Nutrients (Phosphate, Nitrate, Silicate); NOAA Atlas NESDIS 76: Silver Spring, MD, USA, 2014; 25p. Available online: https://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol4.pdf (accessed on 30 September 2018).
- Wang, B.D. Nutrient distributions and their limitation of phytoplankton in the Yellow Sea and the East China Sea. J. Appl. Ecol. 2003, 14, 1122–1126. (In Chinese) [Google Scholar]
- Anderson, D.M.; Glibert, P.M.; Burkholder, J.M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 2002, 25, 704–726. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Paerl, H.W. Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnol. Oceanogr. 1997, 42, 1154–1165. [Google Scholar] [CrossRef] [Green Version]
- Fanning, K.A.; Carder, K.L.; Betzer, P.R. Sediment resuspension by coastal waters: A potential mechanism for nutrient re-cycling on the ocean’s margins. Deep Sea Res. Part A. Oceanogr. Res. Pap. 1982, 29, 953–965. [Google Scholar] [CrossRef]
- Shi, X.; Wang, X.; Han, X.; Zhu, C.; Sun, X.; Zhang, C. Nutrient distribution and its controlling mechanism in the adjacent area of Changjiang River estuary. J. Appl. Ecol. 2003, 14, 1086–1092. (In Chinese) [Google Scholar]
B1 | B2 | B3 | B4 | B5 | B6 | |
---|---|---|---|---|---|---|
Nitrates | <0.1 | 0.27 | 0.37 | 0.58 | 0.68 | 0.66 |
Phosphates | 0.13 | 0.37 | 0.50 | 0.67 | 0.67 | 0.64 |
Nitrate | Phosphate | |||||
---|---|---|---|---|---|---|
R2 | RMSE | MRE | R2 | RMSE | MRE | |
Training | 0.98 | 6.14 | 13.5% | 0.86 | 0.20 | 14.6% |
Validation | 0.98 | 7.68 | 17.7% | 0.75 | 0.25 | 16.7% |
Test | 0.99 | 6.13 | 11.2% | 0.83 | 0.22 | 13.3% |
All | 0.98 | 6.38 | 13.8% | 0.84 | 0.21 | 14.7% |
R2 | RMSE | MRE | |
---|---|---|---|
Band 1 (412 nm) | 0.57 | 0.0043 | 0.332 |
Band 2 (443 nm) | 0.80 | 0.0040 | 0.299 |
Band 3 (490 nm) | 0.87 | 0.0041 | 0.270 |
Band 4 (555 nm) | 0.89 | 0.0052 | 0.251 |
Band 5 (660 nm) | 0.89 | 0.0042 | 0.353 |
Band 6 (680 nm) | 0.87 | 0.0043 | 0.336 |
Winter | Spring | Summer | Autumn | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dec. | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | |
Nitrate | I | I | D | D | - | I | I | D | D | I | I | I |
Phosphate | I | I | D | D | D | D | - | - | I | I | I | I |
SSS | D | D | D | D | D | D | D | I | I | I | I | I |
Flux | I | I | I | I | I | I | I | D | D | D | D | D |
PAR | - | I | I | I | I | D | I | D | D | D | D | D |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Cui, Q.; Gong, F.; Wang, L.; He, X.; Bai, Y. Satellite Retrieval of Surface Water Nutrients in the Coastal Regions of the East China Sea. Remote Sens. 2018, 10, 1896. https://doi.org/10.3390/rs10121896
Wang D, Cui Q, Gong F, Wang L, He X, Bai Y. Satellite Retrieval of Surface Water Nutrients in the Coastal Regions of the East China Sea. Remote Sensing. 2018; 10(12):1896. https://doi.org/10.3390/rs10121896
Chicago/Turabian StyleWang, Difeng, Qiyuan Cui, Fang Gong, Lifang Wang, Xianqiang He, and Yan Bai. 2018. "Satellite Retrieval of Surface Water Nutrients in the Coastal Regions of the East China Sea" Remote Sensing 10, no. 12: 1896. https://doi.org/10.3390/rs10121896
APA StyleWang, D., Cui, Q., Gong, F., Wang, L., He, X., & Bai, Y. (2018). Satellite Retrieval of Surface Water Nutrients in the Coastal Regions of the East China Sea. Remote Sensing, 10(12), 1896. https://doi.org/10.3390/rs10121896